Skip to main content
Log in

Computation of the inverse Mittag–Leffler function and its application to modeling ultraslow dynamics

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

The inverse Mittag–Leffler function has been used to model the logarithmic growth of the mean squared displacement in anomalous diffusion, the restricted mobility of membrane proteins, and the slow viscoelastic creep observed in glasses. These applications are hindered because the inverse Mittag–Leffler function has no explicit form and cannot be approximated by existing methods in the domain \(x \in (0,+\infty )\). This study proposes a conversion method to compute the inverse Mittag–Leffler function in terms of the Mittag–Leffler function. The new method uses the one- and two-parameter Mittag–Leffler function to compute the inverse Mittag–Leffler function in the target domain. We apply this method to fit data collected in studies of: (i) the ultraslow mobility of beta-barrel proteins in bacterial membranes, (ii) the ultraslow creep observed in high strength self-compacting concrete, and (iii) the ultraslow relaxation seen in various glasses. The results show that the inverse Mittag–Leffler function can capture ultraslow dynamics in all three cases. This method may also be extended to other generalized logarithmic laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amir, A., Oreg, Y., Imry, Y.: On relaxations and aging of various glasses. Proc. Natl. Acad. Sci. 109(6), 1850–1855 (2012)

    Article  Google Scholar 

  2. Atkinson, C., Osseiran, A.: Rational solutions for the time-fractional diffusion equation. SIAM J. Appl. Math. 71, 792–106 (2011)

    Article  MathSciNet  Google Scholar 

  3. Bo, S., Schmidt, F., Eichhorn, R., Volpe, G.: Measurement of anomalous diffusion using recurrent neural networks. Phys. Rev. E 100, 010102 (2019)

    Article  Google Scholar 

  4. Chen, W., Liang, Y., Hei, X.: Structural derivative based on inverse Mittag–Leffler function for modeling ultraslow diffusion. Fract. Calc. Appl. Anal. 19(5), 1250–1261 (2016). https://doi.org/10.1515/fca-2016-0064

    Article  MathSciNet  MATH  Google Scholar 

  5. Diethelm, K., Ford, N., Freed, A., Luchko, Y.: Algorithms for the fractional calculus: A selection of numerical methods. Comput. Methods Appl. Mech. Eng. 194(6–8), 743–773 (2005)

    Article  MathSciNet  Google Scholar 

  6. Escalante-Martinez, J., Gomez-Aguilar, J., Calderon-Ramon, C., Morales-Mendoza, L., Cruz-Orduna, I., Laguna-Camacho, J.: Experimental evaluation of viscous damping coefficient in the fractional underdamped oscillator. Adv. Mech. Eng. 8(4), 1–12 (2016)

    Article  Google Scholar 

  7. Fernandez, A., Husain, I.: Modified Mittag–Leffler functions with applications in complex formulae for fractional calculus. Fractal Fract. 4(3), 45 (2020)

    Article  Google Scholar 

  8. Friedrich, C.: Relaxation and retardation functions of the Maxwell model with fractional derivatives. Rheol. Acta. 30(2), 151–158 (1991)

    Article  Google Scholar 

  9. Garrappa, R.: Numerical evaluation of two and three parameter Mittag–Leffler functions. SIAM J. Numer. Anal. 53(3), 1350–1369 (2015)

    Article  MathSciNet  Google Scholar 

  10. Garrappa, R., Popolizio, M.: Computing the matrix Mittag–Leffler function with applications to fractional calculus. J. Sci. Comput. 17, 129–153 (2018)

    Article  MathSciNet  Google Scholar 

  11. Gorenflo, R., Kilbas, A., Mainardi, F., Rogosin, S.: Mittag-Leffler Functions, Related Topics and Applications, 2nd edn. Springer, Berlin (2020)

    Book  Google Scholar 

  12. Gorenflo, R., Loutchko, J., Luchko, Y.: Computation of the Mittag–Leffler function and its derivatives. Fract. Calc. Appl. Anal. 5(4), 491–518 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Hanneken, J., Achar, B.: Finite series representation of the inverse Mittag–Leffler function. Math. Probl. Eng. 2014, 1–18 (2014)

    Article  MathSciNet  Google Scholar 

  14. Haubold, H., Mathai, A., Saxena, R.: Mittag-Leffler functions and their applications. J. Appl. Math. 2011, Art. 298628 (2011)

  15. Hilfer, R., Seybold, H.: Computation of the generalized Mittag–Leffler function and its inverse in the complex plane. Integr. Transf. Spec. Func. 17, 637–652 (2006)

    Article  MathSciNet  Google Scholar 

  16. https://www.mathworks.com/help/matlab/ref/fzero.html

  17. Ingo, C., Barrick, T., Webb, A., Ronen, I.: Accurate Pade global approximations for the Mittag–Leffler function, its inverse, and its partial derivatives to efficiently compute convergent power series. Int. J. Appl. Comput. Math. 3(2), 347–362 (2017)

    Article  MathSciNet  Google Scholar 

  18. Iyiola, O., Asante-Asamani, E., Wade, B.: A real distinct poles rational approximation of generalized Mittag–Leffler functions and their inverses: Applications to fractional calculus. J. Comput. Appl. Math. 330, 307–317 (2018)

    Article  MathSciNet  Google Scholar 

  19. Kiryakova, V.: The multi-index Mittag–Leffler functions as an important class of special functions of fractional calculus. Comput. Math. Appl. 59, 1885–1895 (2010)

    Article  MathSciNet  Google Scholar 

  20. Kiryakova, V.: A guide to special functions in fractional calculus. Mathematics 9(1), 106 (2021)

    Article  Google Scholar 

  21. Li, Y., Chen, Y., Podlubny, I.: Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965–1969 (2009)

    Article  MathSciNet  Google Scholar 

  22. Liang, Y., Chen, W., Akpa, B., Neuberger, T., Magin, R.: Using spectral and cumulative spectral entropy to classify anomalous diffusion in Sephadex gels. Comput. Math. Appl. 73, 765–774 (2017)

    Article  MathSciNet  Google Scholar 

  23. Liang, Y., Chen, W.: Continuous time random walk model with asymptotical probability density of waiting times via inverse Mittag–Leffler function. Commun. Nonlinear Sci. 57, 439–448 (2018)

    Article  MathSciNet  Google Scholar 

  24. Liang, Y., Tian, P., Wang, S., Xu, W.: Non-Fickian diffusion in time-space fluctuating diffusivity landscapes: From superfast to ultraslow. Fractals 29, 2150191 (2021)

    Article  Google Scholar 

  25. Liang, Y., Wang, S., Chen, W., Zhou, Z., Magin, R.: A survey of models of ultraslow diffusion in heterogeneous materials. Appl. Mech. Rev. 71, 040802 (2019)

    Article  Google Scholar 

  26. Liang, Y., Xu, W., Chen, W., Weberszpil, J.: From fractal to a generalized fractal: Non-power-function structal metric. Fractals 27(5), 345–359 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Liang, Y.: Diffusion entropy method for ultraslow diffusion using inverse Mittag–Leffler function. Fract. Calc. Appl. Anal. 21(1), 104–117 (2018). https://doi.org/10.1515/fca-2018-0007

    Article  MathSciNet  MATH  Google Scholar 

  28. Lill, Y., Jordan, L., Smallwood, C., Newton, S., Ritchie, K.: Confined mobility of TonB and FepA in escherichia coli membranes. Plos One 11, e0160862 (2016)

    Article  Google Scholar 

  29. Lomnitz, C.: Creep measurements in igneous rocks. J. Geol. 64(5), 473–479 (1956)

    Article  Google Scholar 

  30. Magin, R.: Models of diffusion signal decay in magnetic resonance imaging: Capturing complexity. Concept Magn. Reson. A 45A(4), e21401 (2016)

    Article  Google Scholar 

  31. Magin, R., Karaman, M., Hall, M., Zhu, W., Zhou, X.: Capturing complexity of the diffusion-weighted MR signal decay. Magn. Reson. Imaging 56, 110–118 (2019)

    Article  Google Scholar 

  32. Maia, L., Figueiras, J.: Early-age creep deformation of a high strength self-compacting concrete. Constr. Build. Mater. 34, 602–610 (2012)

    Article  Google Scholar 

  33. Mainardi, F.: An historical perspective on fractional calculus in linear viscoelasticity. Fract. Calc. Appl. Anal. 15(4), 712–717 (2012). https://doi.org/10.2478/s13540-012-0048-6

    Article  MathSciNet  MATH  Google Scholar 

  34. Mainardi, F.: Why the Mittag–Leffler function can be considered the Queen function of the Fractional Calculus? Entropy 22, 1359 (2020)

    Article  MathSciNet  Google Scholar 

  35. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  Google Scholar 

  36. Podlubny, I.: Mittag-Leffler function. MATLAB Central File Exchange (2022). https://www.mathworks.com/matlabcentral/fileexchange/8738-mittag-leffler-function

  37. Sinai, Y.: The limiting behavior of a one-dimensional random walk in a random medium. Theor. Probab. Appl. 27, 256–268 (1983)

    Article  Google Scholar 

  38. Seybold, H., Hilfer, R.: Numerical algorithm for calculating the generalized Mittag–Leffler function. SIAM J. Numer. Anal. 47, 69–88 (2008)

    Article  MathSciNet  Google Scholar 

  39. Su, X., Chen, W., Xu, W., Liang, Y.: Non-local structural derivative Maxwell model for characterizing ultra-slow rheology in concrete. Constr. Build. Mater. 190, 342–348 (2018)

    Article  Google Scholar 

  40. Wang, S., Liang, Y., Magin, R.: Non-exponential relaxation models of signal decay in magnetic resonance imaging. Commun. Nonlinear Sci. 102, 105928 (2021)

    Article  MathSciNet  Google Scholar 

  41. Xu, W., Liang, Y., Cushman, J., Chen, W.: Ultrafast dynamics modeling via fractional Brownian motion run with Mittag–Leffler clock in porous media. Int. J. Heat Mass Tran. 151, 119402 (2020)

    Article  Google Scholar 

  42. Yang, X., Liang, Y., Chen, W.: A local structural derivative PDE model for ultraslow creep. Comput. Math. Appl. 76(7), 1713–1718 (2018)

    Article  MathSciNet  Google Scholar 

  43. Zeng, C., Chen, Y.: Global Pade approximations of the generalized Mittag–Leffler function and its inverse. Fract. Calc. Appl. Anal. 18(6), 1492–1506 (2015). https://doi.org/10.1515/fca-2015-0086

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported by Fundamental Research Funds for the Central Universities (No. B210202098), and the National Natural Science Foundation of China (No. 11702085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingjie Liang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Yu, Y. & Magin, R.L. Computation of the inverse Mittag–Leffler function and its application to modeling ultraslow dynamics. Fract Calc Appl Anal 25, 439–452 (2022). https://doi.org/10.1007/s13540-022-00020-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13540-022-00020-8

Keywords

Mathematics Subject Classification

Navigation