Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viewpoint
  • Published:

Optimal systemic therapy for high-risk resectable melanoma

Immunotherapy with immune-checkpoint inhibitors and molecularly targeted therapy with BRAF inhibitors were pioneered in the setting of advanced-stage, unresectable melanoma, where they revolutionized treatment and considerably improved patient survival. These therapeutic approaches have also been successfully transitioned into the resectable disease setting, with the regulatory approvals of ipilimumab, pembrolizumab, nivolumab, and dabrafenib plus trametinib as postoperative (adjuvant) treatments for various, overlapping groups of patients with high-risk melanoma. Moreover, these agents have shown variable promise when used in the preoperative (neoadjuvant) period. The expanding range of treatment options available for resectable high-risk melanoma, all of which come with risks as well as benefits, raises questions over selection of the optimal therapeutic strategy and agents for each individual, also considering that many patients might be cured with surgery alone. Furthermore, the use of perioperative therapy has potentially important implications for the management of patients who have disease recurrence. In this Viewpoint, we asked four expert investigators and medical or surgical oncologists who have been involved in the key studies of perioperative systemic therapies for their perspectives on the optimal management of patients with high-risk melanoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Gershenwald, C. A. et al. Melanoma staging: evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J. Clin. 67, 472–492 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Eggermont, A. M. M. et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma (EORTC 1325-MG/KEYNOTE-054): distant metastasis-free survival results from a double-blind, randomised, controlled, phase 3 trial. Lancet Oncol. 22, 643–654 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Dummer, R. et al. Five-year analysis of adjuvant dabrafenib plus trametinib in stage III melanoma. N. Engl. J. Med. 383, 1139–1148 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Luke, J. J. et al. LBA3_PR - Pembrolizumab versus placebo after complete resection of high-risk stage II melanoma: efficacy and safety results from the KEYNOTE-716 double-blind phase III trial. Ann. Oncol. 32, S1283–S1346 (2021).

    Article  Google Scholar 

  5. Luke, J. J. et al. Pembrolizumab versus placebo as adjuvant therapy in completely resected stage IIB or IIC melanoma (KEYNOTE-716): a randomised, double-blind, phase 3 trial. Lancet, https://doi.org/10.1016/S0140-6736(22)00562-1 (2022).

  6. Ascierto, P. A. et al. Adjuvant nivolumab versus ipilimumab in resected stage IIIB-C and stage IV melanoma (CheckMate 238): 4-year results from a multicentre, double-blind, randomised, controlled, phase 3 trial. Lancet Oncol. 21, 1465–1477 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Zimmer, L. et al. Adjuvant nivolumab plus ipilimumab or nivolumab monotherapy versus placebo in patients with resected stage IV melanoma with no evidence of disease (IMMUNED): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 395, 1558–1568 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Menzies, A. M. et al. Pathological response and survival with neoadjuvant therapy in melanoma: a pooled analysis from the International Neoadjuvant Melanoma Consortium (INMC). Nat. Med. 27, 301–309 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Tetzlaff, M. T. et al. Pathological assessment of resection specimens after neoadjuvant therapy for metastatic melanoma. Ann. Oncol. 29, 1861–1868 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rozeman, E. A. et al. Survival and biomarker analyses from the OpACIN-neo and OpACIN neoadjuvant immunotherapy trials in stage III melanoma. Nat. Med. 27, 256–263 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Amaria, R. N. et al. Neoadjuvant and adjuvant nivolumab (nivo) with anti-LAG3 antibody relatlimab (rela) for patients (pts) with resectable clinical stage III melanoma. J. Clin. Oncol. 39, 9502 (2021).

    Article  Google Scholar 

  12. Eggermont, A. M. M. et al. Adjuvant ipilimumab versus placebo after complete resection of stage III melanoma: long-term follow-up results of the European Organisation for Research and Treatment of Cancer 18071 double-blind phase 3 randomised trial. Eur. J. Cancer 119, 1–10 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Eggermont, A. M. M. et al. Crossover and rechallenge with pembrolizumab in recurrent patients from the EORTC 1325-MG/Keynote-054 phase III trial, pembrolizumab versus placebo after complete resection of high-risk stage III melanoma. Eur. J. Cancer 158, 156–168 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Larkin, J. et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 381, 1535–1546 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Robert, C. et al. Five-year outcomes with dabrafenib plus trametinib in metastatic melanoma. N. Engl. J. Med. 381, 626–636 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Robert, C. et al. Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): post-hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study. Lancet Oncol. 20, 1239–1251 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Atkins, M. B. et al. DREAMseq (Doublet, Randomized Evaluation in Advanced Melanoma Sequencing): a phase III trial — ECOG-ACRIN EA6134. J. Clin. Oncol. 39, 356154 (2021).

    Article  Google Scholar 

  18. Hugo, W. et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165, 35–44 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kakavand, H. et al. PD-L1 expression and tumor-infiltrating lymphocytes define different subsets of MAPK inhibitor-treated melanoma patients. Clin. Cancer Res. 21, 3140–3148 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Grossmann, K. F. et al. Adjuvant pembrolizumab versus IFNα2b or ipilimumab in resected high-risk melanoma. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-21-1141 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Livingstone, A. et al. Preferences for immunotherapy in melanoma: a systematic review. Ann. Surg. Oncol. 27, 571–584 (2020).

    Article  PubMed  Google Scholar 

  22. Livingstone, A. et al. Should I have adjuvant immunotherapy? An interview study among adults with resected stage 3 melanoma and their partners. Patient 14, 635–647 (2021).

    Article  PubMed  Google Scholar 

  23. Long, G. V. et al. Abstract CT004: Adjuvant therapy with nivolumab (NIVO) combined with ipilimumab (IPI) vs NIVO alone in patients (pts) with resected stage IIIB-D/IV melanoma (CheckMate 915). Cancer Res. 81, CT004 (2021).

    Article  Google Scholar 

  24. Blank, C. U. et al. Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat. Med. 24, 1655–1661 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Rozeman, E. A. et al. Identification of the optimal combination dosing schedule of neoadjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma (OpACIN-neo): a multicentre, phase 2, randomised, controlled trial. Lancet Oncol. 20, 948–960 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Blank, C. U. et al. First safety and efficacy results of PRADO: a phase II study of personalized response-driven surgery and adjuvant therapy after neoadjuvant ipilimumab (IPI) and nivolumab (NIVO) in resectable stage III melanoma. J. Clin. Oncol. 38, 10002 (2020).

    Article  Google Scholar 

  27. Chalabi, M. et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat. Med. 26, 566–576 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. André, T. et al. Neoadjuvant nivolumab plus ipilimumab and adjuvant nivolumab in patients (pts) with localized microsatellite instability-high (MSI)/mismatch repair deficient (dMMR) oeso-gastric adenocarcinoma (OGA): the GERCOR NEONIPIGA phase II study. J. Clin. Oncol. 40, 244 (2022).

    Article  Google Scholar 

  29. Necchi, A. et al. Updated results of PURE-01 with preliminary activity of neoadjuvant pembrolizumab in patients with muscle-invasive bladder carcinoma with variant histologies. Eur. Urol. 77, 439–446 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Rouanne, M. et al. Rationale and outcomes for neoadjuvant immunotherapy in urothelial carcinoma of the bladder. Eur. Urol. Oncol. 3, 728–738 (2020).

    Article  PubMed  Google Scholar 

  31. Powles, T. et al. Clinical efficacy and biomarker analysis of neoadjuvant atezolizumab in operable urothelial carcinoma in the ABACUS trial. Nat. Med. 25, 1706–1714 (2020).

    Article  CAS  Google Scholar 

  32. van Dijk, N. et al. Preoperative ipilimumab plus nivolumab in locoregionally advanced urothelial cancer: the NABUCCO trial. Nat. Med. 26, 1839–1844 (2020).

    Article  PubMed  CAS  Google Scholar 

  33. Vos, J. L. et al. Neoadjuvant immunotherapy with nivolumab and ipilimumab induces major pathological responses in patients with head and neck squamous cell carcinoma. Nat. Commun. 12, 7348 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Maio, M. et al. Neoadjuvant immunotherapy is reshaping cancer management across multiple tumour types: the future is now! Eur. J. Cancer 152, 155–164 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Lipson, E. J. et al. Relatlimab (RELA) plus nivolumab (NIVO) versus NIVO in first-line advanced melanoma: Primary phase III results from RELATIVITY-047 (CA224-047). J. Clin. Oncol. 39, 9503 (2021).

    Article  Google Scholar 

  36. Liu, J. et al. Improved efficacy of neoadjuvant compared to adjuvant immunotherapy to eradicate metastatic disease. Cancer Discov. 6, 1382–1399 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Regan, M. M. et al. Treatment-free survival: a novel outcome measure of the effects of immune checkpoint inhibition — a pooled analysis of patients with advanced melanoma. J. Clin. Oncol. 37, 3350–3358 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dummer, R. et al. Adjuvant dabrafenib plus trametinib versus placebo in patients with resected, BRAFV600-mutant, stage III melanoma (COMBI-AD): exploratory biomarker analyses from a randomised, phase 3 trial. Lancet Oncol. 21, 358–372 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Newell, F. et al. Multiomic profiling of checkpoint inhibitor-treated melanoma: identifying predictors of response and resistance, and markers of biological discordance. Cancer Cell 40, 88–102 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Greenhaw, B. N. et al. Molecular risk prediction in cutaneous melanoma: a meta-analysis of the 31-gene expression profile prognostic test in 1,479 patients. J. Am. Acad. Dermatol. 83, 745–753 (2020).

    Article  PubMed  Google Scholar 

  41. Tan, L. et al. Prediction and monitoring of relapse in stage III melanoma using circulating tumor DNA. Ann. Oncol. 30, 804–814 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Long, G. V. et al. Factors predictive of response, disease progression, and overall survival after dabrafenib and trametinib combination treatment: a pooled analysis of individual patient data from randomised trials. Lancet Oncol. 17, 1743–1754 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Huang, A. C. et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545, 60–65 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Joseph, R. W. et al. Baseline tumor size is an independent prognostic factor for overall survival in patients with melanoma treated with pembrolizumab. Clin. Cancer Res. 24, 4960–4967 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hauschild, A. et al. Modeled prognostic subgroups for survival and treatment outcomes in BRAF V600–mutated metastatic melanoma: pooled analysis of 4 randomized clinical trials. JAMA Oncol. 4, 1382–1388 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Melanoma Institute Australia. Risk Prediction Tools, https://www.melanomarisk.org.au (2022).

  47. Blank, C. U. et al. LBA39 - Personalized combination of neoadjuvant domatinostat, nivolumab (NIVO) and ipilimumab (IPI) in stage IIIB-D melanoma patients (pts) stratified according to the interferon-gamma signature (IFN-γ sign): the DONIMI study. Ann. Oncol. 32, S1283–S1346 (2021).

    Article  Google Scholar 

  48. Zaremba, A. et al. The concepts of rechallenge and retreatment with immune checkpoint blockade in melanoma patients. Eur. J. Cancer 155, 268–280 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Olson, D. J. et al. Pembrolizumab plus ipilimumab following anti-PD-1/L1 failure in melanoma. J. Clin. Oncol. 39, 2647–2655 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Sarnaik, A. A. et al. Lifileucel, a tumor-infiltrating lymphocyte therapy, in metastatic melanoma. J. Clin. Oncol. 39, 2656–2666 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Owen, C. N. et al. Management of early melanoma recurrence despite adjuvant anti-PD-1 antibody therapy. Ann. Oncol. 31, 1075–1082 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Bhave, P. et al. Melanoma recurrence patterns and management after adjuvant targeted therapy: a multicentre analysis. Br. J. Cancer 124, 574–580 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Eggermont, A. M. M. et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol. 16, 522–530 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Eggermont, A. M. M. et al. Prolonged survival in stage III melanoma with ipilimumab adjuvant therapy. N. Engl. J. Med. 375, 1845–1855 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Long, G. V. et al. Adjuvant dabrafenib plus trametinib in stage III BRAF-mutated melanoma. N. Engl. J. Med. 377, 1813–1823 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Hauschild, A. et al. Longer follow-up confirms relapse-free survival benefit with adjuvant dabrafenib plus trametinib in patients with resected BRAFV600-mutant stage III melanoma. J. Clin. Oncol. 36, 3441–3449 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Weber, J. et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N. Engl. J. Med. 377, 1824–1835 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Eggermont, A. M. M. et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N. Engl. J. Med. 378, 1789–1801 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Eggermont, A. M. M. et al. Longer follow-up confirms recurrence-free survival benefit of adjuvant pembrolizumab in high-risk stage III melanoma: new results from the EORTC 1325-MG/KEYNOTE-054 trial. J. Clin. Oncol. 38, 3925–3936 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Long, G. V. et al. Neoadjuvant dabrafenib combined with trametinib for resectable, stage IIIB–C, BRAFV600 mutation-positive melanoma (NeoCombi): a single-arm, open-label, single-centre, phase 2 trial. Lancet Oncol. 20, 961–971 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of G.V.L. is supported by an Australian National Health and Medical Research Council Investigator Grant and the University of Sydney Medical Foundation. J.J.L. acknowledges grant support from the US Department of Defense (W81XWH-17-1-0265), the NIH (UM1CA186690-06, P50CA254865-01A1 and P30CA047904-32), State of Pennsylvania Tobacco Phase 20 Formula Funds, as well as the UPMC Hillman Cancer Center via the Sy Holzer Endowed Immunotherapy Research Fund Award and as a Hillman Senior Faculty Fellow for Innovative Cancer Research.

Author information

Authors and Affiliations

Authors

Contributions

A.M.M.E. is a Full Professor of Clinical & Translational Immunotherapy at the University of Utrecht, Chief Scientific Officer of the Princess Máxima Center for Paediatric Oncology, both in Utrecht, Netherlands, and is Chair of the Board of the Comprehensive Cancer Center Munich, Germany. He is a leading investigator in immunotherapy trials in oncology, in particular in the field of melanoma.

O.H. is the Chief of Translational Research and Immuno-Oncology at The Angeles Clinic and Research Institute, a Cedars-Sinai affiliate, in Los Angeles, CA, USA, where he serves as Co-Director of the Melanoma and Director of the Phase I Programs. His areas of expertise include immunotherapy and phase I drug development. He is recognized as one of the pre-eminent immuno-oncologists and melanoma specialists in the world and has published extensively on and been at the forefront of paradigm-shifting breakthrough treatments, including BRAF/MEK-targeted agents, anti-CTLA4, anti-PD-1 and anti-PD-L1 therapies. His current research interests include next-generation immunotherapeutic agents, including novel immune-checkpoint inhibitors, bispecific antibodies, adoptive T cell therapies and oncolytic therapies, with a focus on combinatorial approaches.

G.V.L. is Professor of Melanoma Medical Oncology and Translational Research at the Melanoma Institute Australia, The University of Sydney, Sydney, Australia. She leads an extensive clinical trials team and translational laboratory, with a focus on targeted therapies and immuno-oncology in melanoma. She is a Clarivate highly cited Researcher for 2017–2021 and is ranked the world’s second, and Australia’s first, melanoma expert in all fields and disciplines (http://expertscape.com/ex/melanoma), with over 400 peer-reviewed publications in clinical and translational research in melanoma. In recognition of her ground-breaking research and work, she has received multiple awards, and she holds many leadership and advisory positions in the field of melanoma.

J.J.L. is Associate Professor of Medicine at the University of Pittsburgh and Director of the Cancer Immunotherapeutics Center at UPMC Hillman Cancer Center in Pittsburgh, PA, USA. His laboratory studies correlates of immunotherapy outcomes, and he is a leading investigator in the fields of melanoma and novel drug development in oncology.

Corresponding authors

Correspondence to Alexander M. M. Eggermont, Omid Hamid, Georgia V. Long or Jason J. Luke.

Ethics declarations

Competing interests

A.M.M.E. has served on data safety monitoring boards for Biocad, BioNTech, GlaxoSmithKline (GSK), Novartis and Pfizer; and has served on scientific advisory boards for Agenus, Biocad, BioInvent, CatalYm, Clover, Ellipses, Galecto, GSK, IO Biotech, Merck, Nektar, Sairopa, Sellas, SkylineDx, TigaTx and TTxDiscovery. O.H. has received speaker’s bureau from Bristol Myers Squibb (BMS), Novartis, Pfizer and Sanofi/Regeneron; is a consultant for Aduro, Akeso, Alkermes, Amgen, Beigene, Bioatla, BMS, GSK, lmmunocore, ldera, lncyte, lnstilBio, lovance, Janssen, Merck, NextCure, Novartis, Pfizer, Roche/Genentech, Sanofi/Regeneron, Seattle Genetics, Tempus and Zelluna; and is at a contracted research institution for Arcus, Aduro, Akeso, Amgen, Bioatla, BMS, CytomX, Exelixis, GSK, lmmunocore, ldera, lncyte, lovance, Merck, Moderna, Merck-Serono, NextCure, Novartis, Pfizer, Roche/Genentech, Rubius, Sanofi/Regeneron, Seattle Genetics, Taiga, Torque and Zelluna. G.V.L. is a consultant/adviser for Agenus, Amgen, Array Biopharma, Boehringer Ingelheim, BMS, Evaxion Biotech, Hexal AG (Sandoz Company), Highlight Therapeutics, Merck Sharpe & Dohme, Novartis, OncoSec, Pierre Fabre, Provectus, Qbiotics and Regeneron. J.J.L. has served on data safety monitoring boards for Abbvie, Immutep and Evaxion. He has served on scientific advisory boards without equity consideration for 7 Hills, Bright Peak, Exo, Fstar, Inzen, RefleXion and Xilio, and with equity consideration for Actym, Alphamab Oncology, Arch Oncology, Kanaph, Mavu, NeoTx, Onc.AI, OncoNano, Pyxis, Stipe and Tempest. He has held consultancy roles with compensation for Abbvie, Alnylam, Bayer, BMS, Castle, Checkmate, Codiak, Crown, Day One, Duke St, EMD Serono, Endeavor, Flame, Genentech, Gilead, HotSpot, Ikena, Immunocore, Incyte, Janssen, Kadmon, Macrogenics, Merck, Mersana, Nektar, Novartis, Partner, Pfizer, Regeneron, Servier, STINGthera, Synlogic and Synthekine. He has received research support (all to his institution for clinical trials unless noted) from AbbVie, Astellas, AstraZeneca, BMS (for both investigator-initiated and industry trials), Corvus, Day One, EMD Serono, Fstar, Genmab, Ikena, Immatics, Incyte, Kadmon, KAHR, Macrogenics, Merck, Moderna, Nektar, NextCure, Numab, Palleon, Pfizer (investigator-initiated and industry trials), Replimmune, Rubius, Servier (investigator-initiated trials), Scholar Rock, Synlogic, Takeda, Tizona, Trishula and Xencor. He holds intellectual property on the following patents: Serial #15/612,657 (Cancer Immunotherapy); PCT/US18/36052 (Microbiome Biomarkers for Anti-PD-1/PD-L1 Responsiveness: Diagnostic, Prognostic and Therapeutic Uses Thereof).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eggermont, A.M.M., Hamid, O., Long, G.V. et al. Optimal systemic therapy for high-risk resectable melanoma. Nat Rev Clin Oncol 19, 431–439 (2022). https://doi.org/10.1038/s41571-022-00630-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-022-00630-4

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer