Skip to main content
Log in

Reactive transport modeling of the role of fluorine-rich groundwater in the formation of fluorite ore deposits in the Illinois-Kentucky district, USA

Modèle de transport réactif du rôle d’une eau souterraine riche en fluor dans la formation des gisements fluoritiques du district de l’Illinois-Kentucky, Etats Unis d’Amérique

Modelado de transporte reactivo del rol de las aguas subterráneas ricas en flúor en la formación de depósitos de mineral de fluorita en el distrito de Illinois-Kentucky, EEUU

美国伊利诺伊州-肯塔基州富氟地下水对形成萤石矿床的反应性传输模型

Modelagem de transporte reativo do papel de águas subterrâneas ricas em flúor na formação de depósitos de minério de fluorita no distrito de Illinois-Kentucky, EUA

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The Illinois-Kentucky ore district hosts the largest deposits of fluorite in the USA. A long-standing hypothesis for the formation of the Illinois-Kentucky deposits is that the ore fluid was a sedimentary brine infused with F-rich fluids exsolved from Permian ultramafic magmas. This ore fluid may have had a F concentration between 680 and 4,300 ppm, three orders of magnitude greater than typical F concentrations in sedimentary brines, and a highly acidic pH between 0 and 1.4. The ore fluid likely ascended faults that intersected permeable limestone formations where neutralization of the ore fluid by reaction with limestone likely drove fluorite precipitation. The present study was undertaken to test the implications of such an acidic F-rich fluid for fluorite ore formation using reactive transport modeling. The models show that an acidic F-rich fluid could have ascended a silicified fault transecting 100s of meters of limestone without becoming neutralized. Upon exiting the fault into a limestone aquifer, the F-rich fluid would have reacted with the limestone and become neutralized within a few meters, producing intense localized limestone dissolution. The models indicate that the neutralization of acidic F-rich fluid is an efficient fluorite precipitation mechanism that can quickly produce a large fluorite-dominant mineral deposit and abundant host rock dissolution consistent with field observations. Conversely, an ore fluid that has a low F concentration and a higher pH more typical of sedimentary brines cannot produce a fluorite-dominant deposit as large as those observed in the field within a geologically reasonable amount of time.

Résumé

Le district minier de l’Illinois-Kentucky héberge les gisements de fluorine les plus importants des Etats Unis d’Amérique. Une hypothèse ancienne concernant la formation des gisements de l’Illinois-Kentucky est que le fluide minéralier était une saumure sédimentaire imprégnée par des fluides riches en F expulsés des magmas ultramafiques du Permien. Ce fluide minéral peut avoir eu une concentration en F comprise entre 680 et 4,300 ppm, soit trois ordres de grandeur au-dessus des concentrations en F classiques dans les saumures sédimentaires, et un pH fortement acide entre 0 et 1.4. Le fluide minéral semble être remonté par des failles recoupant des formations calcaires perméables dans lesquelles la neutralisation du fluide minéral par réaction avec les calcaires a probablement entraîné la précipitation de la fluorine. La présente étude a été conduite dans le but de tester l’implication d’un tel. fluide acide, riche en F dans la formation d’un gisement de fluorine en utilisant un modèle de transport réactif. Les modèles montrent qu’un fluide acide, riche en F pourrait avoir remonté le long d’une faille silicifiée recoupant des 100 aines de mètres de calcaires sans subir de neutralisation. Au point de pénétration de la faille dans l’aquifère calcaire, le fluide riche en F aurait réagi avec le calcaire et aurait été neutralisé en quelques mètres, provoquant une intense dissolution localisée du calcaire. Les modèles indiquent que la neutralisation d’un fluide acide riche en F est un mécanisme efficace de précipitation de la fluorine qui peut rapidement produire un dépôt minéral important à dominante fluoritique et la dissolution abondante de la roche-hôte, ceci en accord avec les observations de terrain. Inversement, un fluide minéral qui a une concentration en F basse et un pH élevé, plus typique des saumures sédimentaires, ne peut pas produire un dépôt à dominante fluorée aussi important que ceux observés sur le terrain dans un délai géologiquement raisonnable.

Resumen

El distrito minero de Illinois-Kentucky contiene los mayores yacimientos de fluorita de los Estados Unidos. Una hipótesis de hace mucho tiempo sobre la formación de los depósitos de Illinois-Kentucky es que el fluido mineral era una salmuera sedimentaria inyectada con fluidos ricos en F disueltos en magmas ultramáficos del Pérmico. Este fluido mineral puede haber tenido una concentración de F entre 680 y 4,300 ppm, tres órdenes de magnitud mayor que las concentraciones típicas de F en las salmueras sedimentarias, y un pH altamente ácido entre 0 y 1.4. El fluido mineral probablemente ascendió por fallas que interceptaron formaciones calcáreas permeables donde la neutralización del fluido mineral por reacción con la caliza probablemente impulsó la precipitación de fluorita. El presente estudio se llevó a cabo para comprobar las consecuencias de un fluido tan ácido y rico en F para la formación de mineral de fluorita utilizando modelos de transporte reactivo. Los modelos muestran que un fluido ácido y rico en F podría haber ascendido por una falla silicificada que atraviesa cientos de metros de caliza sin neutralizarse. Al salir de la falla hacia un acuífero calcáreo, el fluido rico en F habría reaccionado con la caliza y se habría neutralizado en pocos metros, produciendo una intensa disolución localizada de la caliza. Los modelos indican que la neutralización del fluido ácido, rico en F, es un mecanismo eficiente de precipitación de fluorita que puede producir rápidamente un gran depósito de mineral dominante de fluorita y una abundante disolución de la roca receptora, consistente con las observaciones de campo. Por el contrario, un fluido mineral que tiene una baja concentración de F y un pH más alto, más típico de las salmueras sedimentarias, no puede producir un depósito dominante de fluorita tan grande como los observados en el campo dentro de una cantidad de tiempo geológicamente razonable.

摘要

伊利诺伊州-肯塔基州矿区拥有美国最大的萤石矿床。对于伊利诺伊州-肯塔基州矿床形成, 长期假设的是, 矿石流体是注入了从二叠纪超镁铁质岩浆溶出的富氟流体的沉积盐水。这种矿石流体的 F 浓度可能在 680 到 4,300 ppm 之间, 比沉积盐水中的典型 F 浓度高三个数量级, 并且pH呈高酸性, 值从0 到 1.4 之间。矿石流体可能沿切断上升, 该断层切割渗透性好的石灰岩地层, 在该处通过与石灰石反应中和矿石流体从而驱动萤石沉淀。本研究旨在使用反应性传输模型测试这种酸性、富 F 流体对萤石矿形成的影响。模型表明, 富含 F 的酸性流体可能在没有被中和的情况下上升到切割 100 米石灰岩的硅化断层。在离开断层进入石灰岩含水层后, 富氟流体将与石灰岩发生反应并在几米内被中和, 从而产生强烈的局部石灰岩溶解。这些模型表明, 酸性富氟流体的中和是有效的萤石沉淀机制, 可以快速产生大量以萤石为主的矿床和促进丰富的母岩溶解, 这与现场观测结果一致。相反, 具有低 F 浓度和较高 pH 值的更典型沉积盐水的矿石流体不能在地质视角合理的时间内产生与现场观察到的一样大的以萤石为主的矿床。

Resumo

O distrito mineral de Illinois-Kentucky abriga os maiores depósitos de fluorita nos USA. Uma hipótese que perdura sobre a formação dos depósitos Illinois-Kentucky é que o fluido rochoso era uma salmoura sedimentar infusa em fluidos ricos em F dissolvidos de magmas ultra máficos do Permiano. Esse fluído mineral pôde ter concentrações de F entre 680 e 4,300 ppm, três ordens de magnitude maior que as concentrações de F em salmouras sedimentares, e um pH altamente ácido entre 0 e 1.4. O fluido mineral provavelmente ascendeu por falhas que interseccionam formações calcárias permeáveis onde a neutralização do fluído mineral pela reação com o calcário provavelmente gerou a precipitação de fluoreto. O estudo presente foi executado para testar as implicações de um fluido rico em F acidificado para a formação de rocha fluoretada usando modelagem de transporte reativo. Os modelos mostram que um fluido rico em F acidificado pode ter ascendido uma falha silicificada transectando 100 metros de calcário sem tornar-se neutralizado. Em consequência da existência de uma falha no aquífero calcário, o fluído rico em F reagiria com o calcário e se tornaria neutralizado com poucos metros, produzindo uma dissolução intensa localizada de calcário. Os modelos indicam que a neutralização do fluido rico em F acidificado é um mecanismo de precipitação eficiente de fluorita que pode rapidamente produzir um grande deposito mineral dominante em fluorita e abrigo abundante de dissolução de rocha consistente com observações de campo. Por outro lado, um fluxo mineral que tenha uma concentração de F baixa e um pH maior, mais típico de salmouras sedimentares não podem produzir um deposito com dominância de fluorita tão grande quanto aqueles observados no campo com uma quantidade de tempo razoável geologicamente.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Appold MS (2021) Applications of fluid inclusions to studies of sediment-hosted base metal ore deposits: case studies from the Central U.S.A. and Brazil. Mineral Assoc Can Short Course 49:47–72

  • Bastin ES (ed) (1939) Contributions to a knowledge of the lead and zinc deposits of the Mississippi Valley region. Geol Soc Am Spec Pap 24. https://doi.org/10.1130/spe24

  • Baxter JW, Bradbury JC (1989) The Illinois-Kentucky fluorspar mining district. In: Precambrian and Paleozoic geology and ore deposits in the midcontinent region, 28th International Geological Congress Field Trip Guidebook 1989, T147, pp 3–36

  • Baxter JW, Bradbury JC, Hester NC, Clare R, County H, (1973) A geologic excursion to fluorspar mines in Hardin and Pope counties, Illinois. Illinois State Geol. Surv Guidebook Series no. 11, Illinois State Geological Survey, Champaign, IL, pp 1–30

  • Bradbury JC, Baxter JW (1992) Intrusive breccias at Hicks Dome, Hardin County, Illinois. Illinois State Geol Surv Circ 550

  • Brannon JC, Leach DL, Goldhaber MB, Taylor CD, Livingston E (1997) Radiometric dating of ore-stage calcite from knight vein, IL-KY-fluorspar district, yields 195 ma for both U-Pb and Th-Pb systems. Abstr with Programs, Geol Soc Am 29:209

  • Brecke EA (1962) Ore genesis of the Cave-in-Rock Fluorspar District, Hardin County, Illinois. Econ Geol 57:499–535. https://doi.org/10.2113/gsecongeo.57.4.499

    Article  Google Scholar 

  • Brown JS, Emery JA, Meyer PA (1954) Explosion pipe in test well on Hicks Dome, Hardin County, Illinois. Econ Geol 49:891–902. https://doi.org/10.2113/gsecongeo.49.8.891

    Article  Google Scholar 

  • Zartman RE, Brock MR, Heyl AV, Thomas HH (1967) K-Ar and Rb-Sr ages of some alkalic intrusive rocks from central and eastern United States. Am J Sci 265(10):848–870. https://doi.org/10.2475/ajs.265.10.848

    Article  Google Scholar 

  • Chesley JT, Halliday AN, Kyser TK, Spry PG (1994) Direct dating of Mississippi Valley-type mineralization; use of Sm-Nd in fluorite. Econ Geol 89(5):1192–1199. https://doi.org/10.2113/gsecongeo.89.5.1192

    Article  Google Scholar 

  • Denny FB (2005) The Cottage Grove dike and mafic igneous intrusions in southeastern Illinois and their relation to regional tectonics and economic resources. PhD Thesis, Southern Illinois University, Carbondale, IL

  • Denny FB, Devera JA, Kittler A (2013) Bedrock geology of saline mines quadrangle, Gallatin and Hardin counties, Illinois. Illinois Geol Surv Quadrang Map 1–10

  • Denny FB, Guillemette RN, Lefticariu L (2015) Rare earth mineral concentrations within fluorite in the Illinois-Kentucky Fluorite District and igneous intrusives at Hicks Dome Crypto-explosive complex, southern Illinois and northwestern Kentucky (USA). In: Lasemi Z (ed) Proceedings of the 47th Forum on the Geology of Industrial Minerals. Illinois State Geol Surv Circ 587:77–92

  • Fifarek RH, Denny FB, Snee LW, Miggins DP (2001) Permian igneous activity in southeastern Illinois and western Kentucky: implications for tectonism and economic resources. Abstr with Programs - Geol Soc Am 33:420

  • Fuhrmann GD (1994) Regional fluid inclusion study of the Illinois-Kentucky fluorspar district. PhD Thsis, Iowa State University of Science and Technology, Ames, IA

  • Goldstein A (1997) The Illinois-Kentucky fluorite district. Mineral Rec 28(1):3–49

    Google Scholar 

  • Grogan RM, Bradbury JC (1968) Fluorite-zinc-lead deposits of the Illinois-Kentucky mining district. In: Ridge JD (ed) Ore deposits of the United States, 1933–1967, 1st edn. The American Institute of Mining, Metallurgical, and Petroleum Engineers, New York, pp 370–399

  • Hall WE, Friedman I (1963) Composition of fluid inclusions, Cave-in-Rock fluorite district, Illinois, and upper Mississippi Valley zinc-lead district. Econ Geol 58(6):886–911. https://doi.org/10.2113/gsecongeo.58.6.886

    Article  Google Scholar 

  • Hall WE, Heyl AV (1968) Distribution of minor elements in ore and host rock, Illinois-Kentucky fluorite district and upper Mississippi Valley zinc-lead district. Econ Geol 63(6):655–670. https://doi.org/10.2113/gsecongeo.63.6.655

    Article  Google Scholar 

  • Hanor JS (1996) Controls on the solubilization of lead and zinc in basinal brines. In: Sangster DF (ed) Carbonate-hosted Lead–zinc deposits. SEG Spec. Publ. 4, pp 483–500. https://doi.org/10.5382/sp.04.36

  • Heyl AV, Delevaux MH, Zartman RE, Brock MR (1966) Isotopic study of galenas from the upper Mississippi Valley, the Illinois-Kentucky, and some Appalachian Valley mineral districts. Econ Geol 61(5):933–961. https://doi.org/10.2113/gsecongeo.61.5.933

    Article  Google Scholar 

  • Ingebritsen SE, Appold MS (2012) The physical hydrogeology of ore deposits. Econ Geol 107(4):559–584. https://doi.org/10.2113/econgeo.107.4.559

    Article  Google Scholar 

  • Ingebritsen SE, Sanford WE, Neuzil CE (2006) Groundwater in geologic processes. Cambridge University Press, Cambridge, 536 pp

    Google Scholar 

  • Kenderes SM, Appold MS (2017) Fluorine concentrations of ore fluids in the Illinois-Kentucky district: evidence from SEM-EDS analysis of fluid inclusion decrepitates. Geochim Cosmochim Acta 210:132–151. https://doi.org/10.1016/j.gca.2017.04.016

    Article  Google Scholar 

  • Moorehead A (2013) Igneous intrusions at Hicks dome, southern Illinois, and their relationship to fluorine-base metal-rare earth element mineralization. MSc Thesis, Southern Illinois University, Carbondale, IL

  • Nelson WJ (1995) Bedrock geology of the Paducah 1 × 2 quadrangle, Illinois, Kentucky, and Missouri. Illinois State Geol Surv Bull 102

  • Nelson WJ, Lumm DK (1984) Structural geology of southeastern Illinois and vicinity. Illinois Geol Surv ISGS Contract Grant Rep 1984-2, Illinois State Geological Survey, Champaign, IL, 127 pp

  • Palandri JL, Kharaka YK (2004) A compilation of rate parameters of water–mineral interaction kinetics for application to geochemical modeling. US Geol Surv Open File Rep 2004–1068, 64 pp

  • Pelch MA, Appold MS, Emsbo P, Bodnar RJ (2015) Constraints from fluid inclusion compositions on the origin of Mississippi Valley-type mineralization in the Illinois-Kentucky district. Econ Geol 110(3):787–808. https://doi.org/10.2113/econgeo.110.3.787

    Article  Google Scholar 

  • Plumlee GS, Goldhaber MB, Rowan EL (1995) The potential role of magmatic gases in the genesis of Illinois-Kentucky fluorspar deposits: implications from chemical reaction path modeling. Econ Geol 90(5):999–1011. https://doi.org/10.2113/gsecongeo.90.5.999

    Article  Google Scholar 

  • Potter CJ, Goldhaber MB, Heigold PC, Taylor CD (1992) Regional seismic reflection line, southern Illinois Basin, provides new data on Cambrian rift geometry, Hicks Dome genesis, and the fluorspar area fault complex. Abstr. with Programs - Geol Soc Am 24, GSA, Washington, DC, 279 pp

  • Reynolds RL, Goldhaber MB, Snee LW (1997) Paleomagnetic and 40Ar/39Ar results from the Grant intrusive breccia and comparison to the Permian Downeys Bluff sill evidence for Permian igneous activity at Hicks Dome, southern Illinois Basin. US Geol Surv Bull 2094 G

  • Richardson CK, Pinckney DM (1984) The chemical and thermal evolution of the fluids in the Cave-in-Rock fluorspar district, Illinois: mineralogy, paragenesis, and fluid inclusions. Econ Geol 79(8):1833–1856. https://doi.org/10.2113/gsecongeo.79.8.1833

    Article  Google Scholar 

  • Ruiz PJ, Richardson CK, Patchett PJ (1988) Strontium 630 isotope geochemistry of fluorite, calcite, and barite of the Cave-in-Rock fluorite district, Illinois. Econ Geol 83(1):203–210. https://doi.org/10.2113/gsecongeo.83.1.203

    Article  Google Scholar 

  • Smath RA (2010) Brief history of the Western Kentucky Fluorspar District. In: Smath RA (ed) Selected areas within the Western Kentucky Fluorspar District and the Illinois Fluorspar District and a tour of the Ben E. Clement Mineral Museum. Kentucky Soc. Prof. Geol. Guidebook Ser., Kentucky Society of Professional Geologists, Lexington, KY, pp 1–2

  • Smith-Schmitz SE, Appold MS (2018) Prediction of ore fluid metal concentrations from solid solution concentrations in ore-stage calcite: application to the Illinois-Kentucky and Central Tennessee Mississippi Valley-type districts. Geochim Cosmochim Acta 225:210–227. https://doi.org/10.1016/j.gca.2018.01.022

    Article  Google Scholar 

  • Smith SE (2021) Investigations of Mississippi Valley-type mineralizing fluids via analytical geochemistry, numerical modeling, and experimental geochemistry. PhD Thesis, University of Missouri, Columbia, MI

  • Snee LW, Hayes TS (1992) 40Ar/39Ar geochronology of intrusive rocks and Mississippi valley-type mineralization and alteration from the Illinois-Kentucky fluorspar district. US Geol Surv Open-File Rep 59-60

  • Spry PG, Fuhrmann GD (1994) Additional fluid inclusion data for the Illinois-Kentucky fluorspar district; evidence for the lack of a regional thermal gradient. Econ Geol 89(2):288–306. https://doi.org/10.2113/gsecongeo.89.2.288

    Article  Google Scholar 

  • Spry PG, Koellner MS, Richardson CK, Jones HD (1990) Thermochemical changes in the ore fluid during deposition at the Denton mine, Cave-in-Rock fluorspar district, Illinois. Econ Geol 85(1):172–181. https://doi.org/10.2113/gsecongeo.85.1.172

    Article  Google Scholar 

  • Sverjensky DA (1984) Oil field brines as ore-forming solutions. Econ Geol 79(1):23–37. https://doi.org/10.2113/gsecongeo.79.1.23

    Article  Google Scholar 

  • Symons DTA (1994) Paleomagnetism and the late Jurassic genesis of the Illinois-Kentucky fluorspar deposits. Econ Geol 89(3):438–449. https://doi.org/10.2113/gsecongeo.89.3.438

    Article  Google Scholar 

  • Trace RD, Amos DH (1984) Stratigraphy and structure of the western Kentucky fluorspar district, US Geol Surv Prof Pap 1151-D. https://doi.org/10.3133/pp1151d

  • Xu T, Spycher N, Sonnenthal E, Zhang G, Zheng L, Pruess K (2011) TOUGHREACT version 2.0: a simulator for subsurface reactive transport under non-isothermal multiphase flow conditions. Comput Geosci 37(6):763–774. https://doi.org/10.1016/j.cageo.2010.10.007

    Article  Google Scholar 

  • Yancey RJ (1995) Geology of the Illinois-Kentucky fluorspar district. In: Misra KC (ed) Carbonate-hosted lead-zinc-fluorite-barite deposits of North America. SEG vol 22, Society of Economic Geologists, Littleton, CO, pp 160–172

Download references

Acknowledgements

The authors would like to thank Francesco Demichele and one anonymous reviewer for their thoughtful comments that helped us to improve the manuscript.

Funding

The authors would like to acknowledge funding from the University of Missouri Department of Geological Sciences that supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah E. Smith-Schmitz.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith-Schmitz, S.E., Appold, M.S. Reactive transport modeling of the role of fluorine-rich groundwater in the formation of fluorite ore deposits in the Illinois-Kentucky district, USA. Hydrogeol J 30, 1199–1218 (2022). https://doi.org/10.1007/s10040-022-02479-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-022-02479-4

Keywords

Navigation