Skip to main content

Advertisement

Log in

Bias in hydraulic head measurements from multilevel vibrating-wire piezometers with excessively permeable backfill

Biais dans les mesures des charges hydrauliques dans des piézomètres à fils vibrants multi-niveaux avec un remblai excessivement perméable

Desviación en las mediciones de la carga hidráulica de los piezómetros de cuerda vibrante multinivel con un revestimiento excesivamente permeable

过度渗透性回填的多级振弦式压力计水位测量的偏差

Viés em medições de carga hidráulica a partir de piezômetros de fio vibratório multinível com preenchimento excessivamente permeável

  • Technical Note
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

An extensive network of multilevel vibrating-wire piezometers (VWP) was recently created to monitor the spatial and temporal variation of pore pressure (and hydraulic head) in the landslide-prone post-glacial marine clay slopes in Québec, Canada. Some of the VWP installations used well-sorted crushed stone as well backfill between bentonite plugs, instead of bentonite pellets or cement-bentonite grout, which could cause a bias in the hydraulic head measurements due to preferential flow within the backfill (i.e., a hydraulic short circuit). This study uses steady-state two-dimensional radial-coordinate numerical models to quantify the extent of this potential bias, and focuses on the relative importance of the following components: hydraulic conductivity of the crushed stone, length of the backfill intervals, length of the bentonite plugs, magnitude and direction of the vertical gradient, and the degree of vertical and horizontal anisotropy within the clay. Simulation results show that the use of crushed stone as backfill results in measurements of hydraulic head that differ from undisturbed conditions by ±0.25 to ±210 cm, regardless of the values assigned to the parameters of interest. In all cases, the cause of this bias is a series of hydraulic short circuits resulting from preferential flow through the crushed stone intervals.

Résumé

Un vaste réseau de piézomètres à fil vibrant (VWP) à plusieurs niveaux a récemment été créé pour surveiller la variation spatiale et temporelle de la pression interstitielle (et de la charge hydraulique) dans les pentes d’argile marine postglaciaire sujettes aux glissements de terrain au Québec, Canada. Certaines des installations VWP ont utilisé de la pierre concassée bien triée comme remblai entre les bouchons de bentonite, au lieu de granulés de bentonite ou de coulis de ciment-bentonite, ce qui pourrait causer un biais des mesures de la charge hydraulique en raison d’un écoulement préférentiel dans le remblai (c’est-à-dire un court-circuit hydraulique). Cette étude utilise des modèles numériques bidimensionnels à coordonnées radiales en régime permanent pour quantifier l’étendue de ce biais potentiel, et se concentre sur l’importance relative des composants suivants: conductivité hydraulique de la pierre concassée, longueur des intervalles de remblai, longueur des bouchons de bentonite, ampleur et direction du gradient vertical, et degré d’anisotropie verticale et horizontale dans l’argile. Les résultats des simulations montrent que l’utilisation de pierre concassée comme remblai entraîne des mesures de la charge hydraulique qui diffèrent des conditions non perturbées de ±0.25 à ±210 cm, quelles que soient les valeurs attribuées aux paramètres d’intérêt. Dans tous les cas, la cause de ce biais est une série de courts-circuits hydrauliques dus à un écoulement préférentiel à travers les intervalles de pierre concassée.

Resumen

Recientemente se ha creado una amplia red de piezómetros de cuerda vibrante (VWP) de varios niveles para monitorear la variación espacial y temporal de la presión de los poros (y la carga hidráulica) en los taludes de arcilla marina postglacial susceptibles de deslizamiento en Québec, Canadá. Algunas de las instalaciones del VWP utilizaron como revestimiento del pozo grava bien clasificada entre los obturadores de bentonita, en lugar de granulados de bentonita o lechadas de cemento-bentonita, lo que podría causar un sesgo en las mediciones de la carga hidráulica debido al flujo preferencial dentro del revestimiento (es decir, un cortocircuito hidráulico). Este estudio utiliza modelos numéricos bidimensionales de coordenadas radiales en estado estacionario para cuantificar el alcance de esta posible desviación, y se centra en la importancia relativa de los siguientes componentes: la conductividad hidráulica de la grava, la longitud de los intervalos de revestimiento, la longitud de los obturadores de bentonita, la magnitud y la dirección del gradiente vertical, y el grado de anisotropía vertical y horizontal dentro de la arcilla. Los resultados de la simulación muestran que el uso de grava como revestimiento da lugar a mediciones de carga hidráulica que difieren de las condiciones inalteradas entre ±0.25 y ± 210 cm, independientemente de los valores asignados a los parámetros de interés. En todos los casos, la causa de esta desviación es una serie de cortocircuitos hidráulicos resultantes del flujo preferencial a través de los intervalos de grava.

摘要

最近创建了一个多级振弦式压力计(VWP)的广泛网络, 用于监测加拿大魁北克省易发生滑坡的冰后海相粘土斜坡的孔隙压力(和水位)的时空变化。一些 VWP 装置使用分选良好的碎石以及膨润土塞之间的回填, 而不是膨润土颗粒或水泥-膨润土灌浆, 由于回填物中的优先流动(即水力短路)。本研究使用稳定二维径向数值模型来量化这种潜在偏差的程度, 并重点关注以下影响因素的相对重要性:碎石的渗透系数、回填间隔的长度、膨润土塞, 垂向梯度的大小和方向, 以及粘土内的垂向和水平各向异性程度。模拟结果表明, 无论分配给相关参数的值如何, 使用碎石作为回填物会导致水头测量值与未受干扰的条件相差 ±0.25至 ±210 cm。在所有情况下, 这种偏差的原因是由于优先流过碎石层段而导致的一系列液压短路。

Resumo

Uma rede extensa de piezômetros de fio vibratório (PFV) foi criada recentemente para monitorar a variação espacial e temporal da pressão de poro (e carga hidráulica) em encostas de argila marinha pós-glacial propensas a deslizamentos de terra em Québec, Canadá. Algumas das instalações de PFV usaram pedra britada bem sortida e preenchimento entre os tampões de bentonita, ao invés de pellets de bentonita ou argamassa de cimento-bentonita, o que pode causar um viés nas medidas de condutividade hidráulica devido ao fluxo preferencial dentro do preenchimento (p. ex., um curto-circuito hidráulico). Este estudo usa modelos numéricos de coordenadas radiais, bidimensional, em regime permanente, para quantificar a extensão desse viés potencial e foca na importância relativa dos seguintes componentes: condutividade hidráulica da pedra britada, comprimento dos intervalos de preenchimento, comprimento dos tampões de bentonita, magnitude e direção do gradiente vertical e grau de anisotropia horizontal e vertical dentro da argila. Os resultados da simulação mostram que o uso de pedra britada como preenchimento resulta em medições de condutividade hidráulica que diferem das condições indeformadas em ±0.25 até 210 cm, independentemente dos valores atribuídos aos parâmetros de interesse. Em todos os casos, a causa do viés é a série de curtos-circuitos hidráulicos resultantes do fluxo preferencial através dos intervalos de pedra britada.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • American Society for Testing and Materials (2010) Standard practice for design and installation of ground water monitoring wells (Standard number ASTM D5092) Retrieved from: https://www.astm.org/d5092_d5092m-16.html

  • Bilodeau JP (2009) Optimisation de la granulométrie des matériaux granulaires de fondation des chaussées [Optimization of the granulometry of granular pavement foundation materials]. PhD Thesis, Université Laval, Quebec. http://hdl.handle.net/20.500.11794/20809. Accessed April 2022

  • Chapuis RP, Sabourin L (1989) Effects of installation of piezometers and wells on groundwater characteristics and measurements. Can Geotech J 26:604–613

    Article  Google Scholar 

  • Chesnaux R, Chapuis RP, Molson JW (2006) A new method to characterize hydraulic short-circuits in defective borehole seals. Groundwater 44(5):676–681

    Google Scholar 

  • Cloutier C, Locat P, Demers D, Fortin A, Locat J, Leroueil S, Locat A, Lemieux J-M, Bilodeau C (2017) Development of a long-term monitoring network of sensitive clay slopes in Québec in the context of climate change, chap 47. In: Landslides in sensitive clays, advances in natural and technological hazards research, vol 46. Springer, Cham, Switzerland, pp 549–558

    Google Scholar 

  • Demers D, Leroueil S, d’Astous J (1999) Investigation of a landslide in Maskinongé, Québec. Can Geotech J 36(6):1001–1014

    Article  Google Scholar 

  • Demers D, Robitaille D, Locat P, Potvin J (2014) Inventory of large landslides in sensitive clay in the province of Québec, Canada: preliminary analysis. In: L’Heureux JS, Locat A, Leroueil S, Demers D, Locat J (eds) Landslides in sensitive clays: from geosciences to risk management. In: Advances in Natural and Technological Hazards Research, vol 36. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Dourado CN (2018) Characterizing aquitard properties from the response of grouted vibrating wire piezometers to surface loading. MSc Thesis, University of Saskatchewan, Canada, 62 pp. https://harvest.usask.ca/bitstream/handle/10388/11223/DOURADO-THESIS-2018.pdf. Accessed April 2022

  • Germain A (2019) Étude de l’infiltration et des variations verticales de la pression interstitielle dans un massif argileux [Study of infiltration and vertical variations of pore pressure in a clayey mass]. MSc Thesis, Laval University, Canada, 132 pp. http://hdl.handle.net/20.500.11794/37220. Accessed April 2022

  • Germain A, Young NL, Lemieux J-M, Locat A, Delottier H, Fortier P, Leroueil S, Locat P, Demers D, Locat J, Cloutier C (2020) Hydrogeology of a complex Champlain Sea deposit (Quebec, Canada): implications for slope stability. Can Geotech J. https://doi.org/10.1139/cgj-2020-0500

  • International Standard Organisation (2020) Geotechnical investigation and testing: geotechnical monitoring by field instrumentation, part 4—measurement of pore water pressure: piezometers (ISO 18674-4:2020). International Standard Organisation, Geneva

  • Lafleur J, Lefebvre G (1980) Groundwater regime associated with slope stability in Champlain clay deposits. Can Geotech J 17(1):44–53

    Article  Google Scholar 

  • Leroueil S, Bouclin G, Tavernas F, La Rochelle P (1990) Permeability anisotropy of natural clays as a function of strain. Can Geotech J 27(5):568–579

    Article  Google Scholar 

  • Marefat V, Duhaime F, Chapuis RP (2015) Pore pressure response to barometric pressure change in Champlain clay: prediction of the clay elastic properties. Eng Geol 192:16–29

    Article  Google Scholar 

  • Marefat V, Duhaime F, Chapuis RP, Le Borgne V (2017) Fully grouted piezometers in a soft Champlain clay deposit, part I: piezometer installation. Geotech News 35(3):35–38

    Google Scholar 

  • Marefat V, Duhaime F, Chapuis RP, Le Borgne V (2019) Performance of fully grouted piezometers under transient flow conditions: field study and numerical results. Geotech Test J 42(2):433–456. https://doi.org/10.1520/GTJ20170290

    Article  Google Scholar 

  • McKenna GT (1995) Grouted-in installation of piezometers in boreholes. Can Geotech J 32(2):355–363

    Article  Google Scholar 

  • O’Shaughnessy V, Garga V (1994) The hydrogeological and contaminant-transport properties of fractured Champlain Sea clay in eastern Ontario, part 1: hydrogeological properties. Can Geotech J 31(6):885–901

    Article  Google Scholar 

  • Reilly T, Franke OL, Bennet GD (1989) Bias in groundwater samples caused by wellbore flow. J Hydraul Eng 115(2):270–276

  • Richard SK, Chesnaux R, Rouleau A (2015) Detecting a defective casing seal at the top of a bedrock aquifer. Groundwater 54(2):296–303

    Article  Google Scholar 

  • Rosenberg P, Provençal J, Lefebvre G, Paré J-J (1985) Influence of the groundwater on the stability of a clay bank in Baie James, Québec. Can Geotech J 22:409–413

    Article  Google Scholar 

  • Therrien R, McLaren R, Sudicky EA, Panday S (2006) HydroGeoSphere: a three-dimensional numerical model describing fully integrated subsurface and surface flow and solute transport. Groundwater Simul. Group, Waterloo, ON, Canada

    Google Scholar 

  • Young NL, Lemieux J-M, Mony L, Germain A, Locat P, Demers D, Locat A, Locat J (2022) Field performance of four vibrating-wire piezometer installation methods. https://doi.org/10.1139/cgj-2021-0020

Download references

Acknowledgements

The authors would also like to thank Martin d’Anjou from the Quebec Ministry of Transportation for providing details on the construction of the piezometer installations. The authors would like to thank the two anonymous reviewers whose feedback improved the clarity and scope of this manuscript.

Funding

This work was funded by the Quebec Ministry of Public Security through the 2013-2020 Action Plan on Climate Change (PACC 2013-2020) and the Québec Government’s Green Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nathan L. Young or Jean-Michel Lemieux.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Young, N.L., Lemieux, JM., Locat, P. et al. Bias in hydraulic head measurements from multilevel vibrating-wire piezometers with excessively permeable backfill. Hydrogeol J 30, 1337–1344 (2022). https://doi.org/10.1007/s10040-022-02480-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-022-02480-x

Keywords

Navigation