Skip to main content
Log in

Chemically triggered life control of “smart” hydrogels through click and declick reactions

  • Communication
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The degradation of polymeric materials is recognized as one of the goals to be fulfilled for the sustainable economy. In this study, a novel methodology was presented to synthesize multiple highly cross-linked polymers (i.e., hydrogels) through amine-thiol scrambling under mild conditions. Amine-terminated poly(ethylene glycol) (PEG-NH2) was reacted with the representative conjugate acceptors to synthesize hydrogels in organic and aqueous solutions, respectively. The materials above exhibited high water-swelling properties, distributed porous structures, as well as prominent mechanical strengths. It is noteworthy that the mentioned hydrogels could be degraded efficiently in hours to release the original coupling partner, which were induced by ethylene diamine at ambient temperature through amine-amine metathesis. The recovered PEG-NH2 reagent could be employed again to regenerate hydrogels. Due to the multiple architectures and functions in polymeric synthesis, degradation and regeneration, a new generation of “smart” materials is revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu X, Liu J, Lin S, Zhao X. Hydrogel machines. Materials Today, 2020, 36(25): 102–124

    Article  CAS  Google Scholar 

  2. Hockaday L A, Kang K H, Colangelo N W, Cheung P Y, Duan B, Malone E, Wu J, Girardi L N, Bonassar L J, Lipson H, et al. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication, 2012, 4(3): 035005–035017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Buwalda S J, Boere K W, Dijkstra P J, Feijen J, Vermonden T, Hennink W E. Hydrogels in a historical perspective: from simple networks to smart materials. Journal of Controlled Release, 2014, 190(21): 254–273

    Article  CAS  PubMed  Google Scholar 

  4. Perez-San Vicente A, Peroglio M, Ernst M, Casuso P, Loinaz I, Grande H J, Alini M, Eglin D, Dupin D. Self-healing dynamic hydrogel as injectable shock-absorbing artificial nucleus pulposus. Biomacromolecules, 2017, 18(8): 2360–2370

    Article  CAS  PubMed  Google Scholar 

  5. Cheng H, Yue K, Kazemzadeh-Narbat M, Liu Y, Khalilpour A, Li B, Zhang Y S, Annabi N, Khademhosseini A. Mussel-inspired multifunctional hydrogel coating for prevention of infections and enhanced osteogenesis. ACS Applied Materials & Interfaces, 2017, 9(13): 11428–11439

    Article  CAS  Google Scholar 

  6. Zhao X, Wu H, Guo B, Dong R, Qiu Y, Ma P X. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials, 2017, 122(4): 34–47

    Article  CAS  PubMed  Google Scholar 

  7. Li J, Mooney D J. Designing hydrogels for controlled drug delivery. Nature Reviews Materials, 2016, 1(12): 1–17

    Article  Google Scholar 

  8. Choi M, Choi J W, Kim S, Nizamoglu S, Hahn S K, Yun S H. Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo. Nature Photonics, 2013, 7(12): 987–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu L, Chen K, Chen G Q, Kentish S E, Li G. Development of barium@alginate adsorbents for sulfate removal in lithium refining. Frontiers of Chemical Science and Engineering, 2020, 15(1): 198–207

    Article  Google Scholar 

  10. Huang Y, Li H, He X, Yang X, Li L, Liu S, Zou Z, Wang K, Liu J. Near-infrared photothermal release of hydrogen sulfide from nanocomposite hydrogels for anti-inflammation applications. Chinese Chemical Letters, 2020, 31(3): 787–791

    Article  CAS  Google Scholar 

  11. Guo Y, Bae J, Fang Z, Li P, Zhao F, Yu G. Hydrogels and hydrogel-derived materials for energy and water sustainability. Chemical Reviews, 2020, 120(15): 7642–7707

    Article  CAS  PubMed  Google Scholar 

  12. Choi M, Humar M, Kim S, Yun S H. Step-index optical fiber made of biocompatible hydrogels. Advanced Materials, 2015, 27(17): 4081–4086

    Article  CAS  PubMed  Google Scholar 

  13. Yan D, Liu S, Jia Y G, Mo L, Qi D, Wang J, Chen Y, Ren L. Responsive polypseudorotaxane hydrogels triggered by a compatible stimulus of CO2. Macromolecular Chemistry and Physics, 2019, 220(12): 1900071–1900076

    Article  Google Scholar 

  14. Chalmers E, Li Y, Liu X. Molecular tailoring to improve polypyrrole hydrogels’ stiffness and electrochemical energy storage capacity. Frontiers of Chemical Science and Engineering, 2019, 13(4): 684–694

    Article  CAS  Google Scholar 

  15. Yang C, Suo Z. Hydrogel ionotronics. Nature Reviews Materials, 2018, 3(6): 125–142

    Article  CAS  Google Scholar 

  16. Arslan H, Nojoomi A, Jeon J, Yum K 3rd. Printing of anisotropic hydrogels with bioinspired motion. Advancement of Science, 2019, 6(2): 1800703–1800711

    Google Scholar 

  17. Gao Y, Gu S, Jia F, Gao G. A skin-matchable, recyclable and biofriendly strain sensor based on a hydrolyzed keratin-containing hydrogel. Journal of Materials Chemistry A, 2020, 8(45): 24175–24183

    Article  CAS  Google Scholar 

  18. Correa S, Grosskopf A K, Lopez Hernandez H, Chan D, Yu A C, Stapleton L M, Appel E A. Translational applications of hydrogels. Chemical Reviews, 2021, 18(14): 11385–11457

    Article  Google Scholar 

  19. Glowacki J, Mizuno S. Collagen scaffolds for tissue engineering. Biopolymers, 2008, 89(5): 338–344

    Article  CAS  PubMed  Google Scholar 

  20. Haque M A, Kurokawa T, Gong J P. Super tough double network hydrogels and their application as biomaterials. Polymer, 2012, 53(9): 1805–1822

    Article  CAS  Google Scholar 

  21. Yue Y, Wang X, Wu Q, Han J, Jiang J. Highly recyclable and super-tough hydrogel mediated by dual-functional TiO2 nanoparticles toward efficient photodegradation of organic water pollutants. Journal of Colloid and Interface Science, 2020, 564(5): 99–112

    Article  CAS  PubMed  Google Scholar 

  22. Liu Y, Sun Q, Yang X, Liang J, Wang B, Koo A, Li R, Li J, Sun X. High-performance and recyclable Al-air coin cells based on eco-friendly chitosan hydrogel membranes. ACS Applied Materials & Interfaces, 2018, 10(23): 19730–19738

    Article  CAS  Google Scholar 

  23. Yuan T, Qu X, Cui X, Sun J. Self-healing and recyclable hydrogels reinforced with in situ-formed organic nanofibrils exhibit simultaneously enhanced mechanical strength and stretchability. ACS Applied Materials & Interfaces, 2019, 11(35): 32346–32353

    Article  CAS  Google Scholar 

  24. Chamas A, Moon H, Zheng J, Qiu Y, Tabassum T, Jang J H, Abu-Omar M, Scott S L, Suh S. Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering, 2020, 8(9): 3494–3511

    Article  CAS  Google Scholar 

  25. Delplace V, Nicolas J. Degradable vinyl polymers for biomedical applications. Nature Chemistry, 2015, 7(10): 771–784

    Article  CAS  PubMed  Google Scholar 

  26. Ben Cheikh A, Chuche J, Manisse N, Pommelet J C, Netsch K P, Lorencak P, Wentrup C. Synthesis of α-cyano carbonyl compounds by flash vacuum thermolysis of (alkylamino)methylene derivatives of meldrum’s acid. Evidence for facile 1,3-shifts of alkylamino and alkylthio groups in imidoylketene intermediates. Journal of Organic Chemistry, 1991, 56(3): 970–975

    CAS  Google Scholar 

  27. Sweidan K, Abu-Salem Q, Al-Sheikh A, Sheikha G. Novel derivatives of 1,3-dimethyl-5-methylenebarbituric acid. Letters in Organic Chemistry, 2009, 6(8): 669–672

    Article  CAS  Google Scholar 

  28. El-Zaatari B M, Ishibashi J S A, Kalow J A. Cross-linker control of vitrimer flow. Polymer Chemistry, 2020, 11(33): 5339–5345

    Article  CAS  Google Scholar 

  29. Diehl K L, Kolesnichenko I V, Robotham S A, Bachman J L, Zhong Y, Brodbelt J S, Anslyn E V. Click and chemically triggered declick reactions through reversible amine and thiol coupling via a conjugate acceptor. Nature Chemistry, 2016, 8(10): 968–973

    Article  CAS  Google Scholar 

  30. Meadows M K, Sun X, Kolesnichenko I V, Hinson C M, Johnson K A, Anslyn E V. Mechanistic studies of a “declick” reaction. Chemical Science (Cambridge), 2019, 10(38): 8817–8824

    Article  CAS  Google Scholar 

  31. Sun X, Chwatko M, Lee D H, Bachman J L, Reuther J F, Lynd N A, Anslyn E V. Chemically triggered synthesis, remodeling, and degradation of soft materials. Journal of the American Chemical Society, 2020, 142(8): 3913–3922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chang L, Wang C, Han S, Sun X, Xu F. Chemically triggered hydrogel transformations through covalent adaptable networks and applications in cell culture. ACS Macro Letters, 2021, 10(7): 901–906

    Article  CAS  PubMed  Google Scholar 

  33. Wu T, Liang T, Hu W, Du M, Zhang S, Zhang Y, Anslyn E V, Sun X. Chemically triggered click and declick reactions: application in synthesis and degradation of thermosetting plastics. ACS Macro Letters, 2021, 10(9): 1125–1131

    Article  CAS  PubMed  Google Scholar 

  34. Fang Y, Xu J, Gao F, Du X, Du Z, Cheng X, Wang H. Self-healable and recyclable polyurethane-polyaniline hydrogel toward flexible strain sensor. Composites Part B: Engineering, 2021, 219(22): 108965–108974

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Zhang or Xiaolong Sun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Du, M., Wei, H. et al. Chemically triggered life control of “smart” hydrogels through click and declick reactions. Front. Chem. Sci. Eng. 16, 1399–1406 (2022). https://doi.org/10.1007/s11705-022-2149-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2149-z

Keywords

Navigation