Skip to main content
Log in

Simulation of Sorption Purification of Hydrocarbon Fuel from Sulfur Compounds with Transition-Metal Pivalates

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract—

Theoretical and experimental methods were used to model the adsorption desulfurization process of hydrocarbon fuels with the pivalates Zn(II), Co(II), Ni(II) deposited on silica gel of various porosities via ultrasonic action. The proposed adsorbents make it possible to reduce the content of toxic sulfur components to 4 ppm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Jaf, Z.N., Altarawneh, M., Miran, H.A., Jiang, Z.T., and Dlugogorski, B.Z., Hydrodesulfurization of thiophene over γ-Mo2N catalyst, Mol. Catal., 2018, vol. 459, p. 21.

    Article  CAS  Google Scholar 

  2. Krolikowski, M. and Lipinska, A., Separation of thiophene, or benzothiophene from model fuel using glycols: liquid–liquid phase equilibria and oxidative desulfurization study, Fluid Phase Equilib., 2019, vol. 482, p. 11.

    Article  CAS  Google Scholar 

  3. Solov’ev, V.O., Zakhodyaeva, Y.A., and Voshkin, A.A., On the influence of additives of polymer, sodium nitrate, and 1-methyl-2-pyrrolidone on the extraction of thiophene in an n-hexane–water system, Theor. Found. Chem. Eng., 2020, vol. 54, no. 5, pp. 894–899.

    Article  Google Scholar 

  4. Crandall, B.S., Zhang, J., Stavila, V., Allendorf, M.D., and Li, Z., Desulfurization of liquid hydrocarbon fuels with microporous and mesoporous materials: metal organic frameworks, zeolites and mesoporous silicas, Ind. Eng. Chem. Res., 2019, vol. 58, no. 42, p. 19322.

    Article  CAS  Google Scholar 

  5. Habeeb, O.A., Kanthasamy, R., Ali, G.A.M., Sethupathi, S., and Yunus, R.B.M., Hydrogen sulfide emission sources, regulations, and removal techniques: a review, Rev. Chem. Eng., 2017, vol. 34, no. 6, p. 837.

    Article  Google Scholar 

  6. Shah, M. S., Tsapatsis, M., and Siepmann, J.I., Hydrogen sulfide capture: from absorption in polar liquids to oxide, zeolite, and metal–organic framework adsorbents and membranes. Chem. Rev., 2017, vol. 117, no. 14, p. 9755.

    Article  CAS  Google Scholar 

  7. Ling, K., Gangoli, V.S., and Barron, A.R., Synergic adsorption of H2S using high surface area iron oxide–carbon composites at room temperature, Energy Fuels, 2019, vol. 33, no. 8, p. 7509.

    Article  CAS  Google Scholar 

  8. Liu, Q., Ke, M., Liu, F., Yu, P., Hu, H., and Li, C., High-performance removal of methyl mercaptan by nitrogen-rich coconut shell activated carbon, RSC Adv., 2017, vol. 7, p. 22892.

    Article  CAS  Google Scholar 

  9. Khabazipour, M. and Anbia, M., Removal of hydrogen sulfide from gas streams using porous materials: a review, Ind. Eng. Chem. Res., 2019, vol. 58, no. 49, p. 22133.

    Article  CAS  Google Scholar 

  10. Yang, J.H., Hydrogen sulfide removal technology: a focused review on adsorption and catalytic oxidation, Korean J. Chem. Eng., 2021, vol. 38, p. 674.

    Article  CAS  Google Scholar 

  11. Guo, Y.H., Pan, G.X., Xu, M.H., Wu. T., and Wang, Y.Y., Synthesis and adsorption desulfurization performance of modified mesoporous silica materials M-MCM-41 (M = Fe, Co, Zn), Clays Clay Miner., 2019, vol. 67, p. 325.

    Article  CAS  Google Scholar 

  12. Mansouri, A., Khodadadi, A.A., and Mortazavi, Y., Ultra-deep adsorptive desulfurization of a model diesel fuel on regenerable Ni–Cu/γ-Al2O3 at low temperatures in absence of hydrogen, J. Hazard. Mater., 2014, vol. 271, p. 120.

    Article  CAS  Google Scholar 

  13. Kramer, J.F., O’Brien, F., and Strba, S.F., A new high performance quaternary phosphonium biocide for microbiological control in oilfield water systems, NACE Int. Corros. Conf. Ser., 2008.

  14. Vlasaty, V. and Cao, D.Q., Patent WO 2008/019320, Biocidal compositions and methods, 2006.

  15. Murray, D.T., A new quat demonstrates high biocidal efficacy with low foam, NACE Int. Corros. Conf. Ser., 1997.

  16. Gannon, J.E. and Thornburgh, S., Patent WO 1988/002351, The control of biofouling in aqueous systems by non-polymeric quaternary ammonium polyhalides, 1988.

  17. Otter, G.P., Breen, S.G., Woodward, G., Talbot, R.E., Padda, R.S., Davis, K.P., D’Arbeloff-Wilson, S., and Jones, C.R., Pat. WO 2003/021031, Phosphorus compounds, 2002.

  18. Kelland, M.A., Production Chemicals for the Oil and Gas Industry, Boca Raton, Fla., USA: CRC, 2009.

    Google Scholar 

  19. Ramachandran, S., Lehrer, S.E., and Jovancicevic, V., Patent US 20140305845, Metal carboxylate salts as H2S scavengers in mixed production or dry gas or wet gas systems, 2016.

  20. Minkin, A.M., Quantum chemical modeling of adsorption of molybdenum atoms on the surface of silicon oxide, Vestn. Tekhnol. Univ., 2019, vol. 22, no. 12, p. 74.

    Google Scholar 

  21. Gueddida, S., Lebégue, S., and Badawi, M., Interaction between transition metals (Co, Ni, and Cu) systems and amorphous silica surfaces: a DFT investigation, Appl. Surf. Sci., 2020, vol. 533, no. 15, p. 147422.

    Article  CAS  Google Scholar 

  22. Deraet, X., Turek, J., Alonso, M., Tielens, F., Cottenier, S., Ayers, P.W., Weckhuysen, B.M., and De Proft, F., Reactivity of single transition metal atoms on a hydroxylated amorphous silica surface: a periodic conceptual DFT investigation, Chem. Eur. J., 2021, vol. 27, no. 19, p. 6050.

    Article  CAS  Google Scholar 

  23. Samoilov, N.A., Mathematical modeling and optimization of diesel-fuel h ydrotreatment, Theor. Found. Chem. Eng., 2021, vol. 55, no. 1, p. 99.

    Article  Google Scholar 

  24. Berberova, N.T., Okhlobystin, A.O., Storozhenko, V.N., Oleinikova, K.V., Kamyshnikova, A.S., Eremenko, I.L., and Zorina-Tikhonova, E.N., Patent RF 2738720, A method to produce adsorbent to remove lower sulfur compounds from liquid hydrocarbons, 2020.

  25. Fomina, I.G., Chernyshev, V.V., Velikodnyi, Y.A., Bykov, M.A., Malkerova, I.P., Alikhanyan, A.S., Zavorotnyi, Yu.S., Dobrokhotova, Zh.V., and Eremenko, I.L., Synthesis, structure, and thermal behavior of polymeric zinc(II) pivalate, Russ. Chem. Bull., 2013, vol. 62, p. 427.

    Article  CAS  Google Scholar 

  26. Fomina, I.G., Aleksandrov, G.G., Dobrokhotova, Z.V., Proshenkina, O.Y., Kiskin, M.A., Velikodnyi, Y.A., Ikorskii, V.N., Novotortsev, V.M., and Eremenko, I.L., High-spin carboxylate polymers [M(OOCCMe3)2]n of group VIII 3d metals, Russ. Chem. Bull., 2006, vol. 55, p. 1909.

    Article  CAS  Google Scholar 

  27. Eremenko, I.L., Golubnichaya, M.A., Nefedov, S.E., Sidorov, A.A., Golovaneva, I.F., Burkov, V.I., Ellert, O.G., Novotortsev, V.M., Eremenko, L.T., Sousa, A., and Bermejo, M.R., Synthesis, structures, and magnetic properties of binuclear carboxylate complexes with Ni II and Ni III atoms, Russ. Chem. Bull., 1998, vol. 47, no. 4, p. 704.

    Article  CAS  Google Scholar 

  28. GOST R (State Standard) 51947-2002: Determination of Sulfur by Energy-Dispersive X-Ray Fluorescence Spectrometry, in Sb. GOSTov (Collection of GOSTs), Moscow: Standartinform, 2006.

  29. Berberova, N.T., Belinskii, B.I., Tarakanov, G.V., Shinkar’, E.V., Manyashin, A.O., and Girenko, E.E., RF Patent 2207559, A method to quantitatively determine thiols in nonaqueous media, 2003.

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 18-29-24001).

The synthesis, X-ray diffraction and elemental analysis, and infrared spectroscopy of the compounds were carried out by the Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. T. Berberova.

Additional information

Translated by M. Drozdova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okhlobystin, A.O., Kamyshnikova, A.S., Oleinikova, K.V. et al. Simulation of Sorption Purification of Hydrocarbon Fuel from Sulfur Compounds with Transition-Metal Pivalates. Theor Found Chem Eng 56, 84–91 (2022). https://doi.org/10.1134/S0040579522010067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579522010067

Keywords:

Navigation