Skip to main content
Log in

Synthesis of a Nanocomposite Containing CTAB-stabilized Fe3O4 Magnetic Nanoparticles and a Comparison between the Adsorption Behavior of Cobalt ions on the Nanocomposite and Typha latifolia L.

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

In the present study, an adsorption method exploiting synthetic and natural adsorbents was utilized for removing cobalt ions from aqueous solutions. First, the nanocomposite synthetic adsorbent containing Fe3O4 magnetic particles stabilized by cetyltrimethylammonium bromide (CTAB) was synthesized and then, the sample was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption and desorption isotherms (BET). The impacts of various operating parameters (adsorbate concentration, pH, adsorbent dose, contact time, and stirring speed) were also investigated. The results indicated that the pseudo-second order kinetic model can well fit the experimental values of cobalt ion removal from aqueous solution for both adsorbents. Gibbs free energy, enthalpy and entropy were also calculated which revealed that the adsorption behavior for both adsorbents is chemical, endothermic and spontaneous. Moreover, the equilibrium data were fitted with Langmuir, Freundlich, Temkin and Dubinin-Radushkevich equilibrium isotherms. Accordingly, CO2+ adsorption on both nanocomposite and Typha latifolia L. followed the Langmuir isotherm model. The maximum amount of the cobalt ion removal by nanocomposite and Typha latifolia L. adsorbents was evaluated to be 196.07 and 107.52 mg/g of adsorbent, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Tikhomolova, K.P., Kufman, Y.V., and Urakova, I.N., Adsorption and desorption of Ni(II) in quartz–aqueous solution systems at various pHs, Russ. J. Appl. Chem., 2001, vol. 74, no. 8, pp. 1295–1300. https://doi.org/10.1023/A:1013750128095

    Article  CAS  Google Scholar 

  2. Igwe, J. and Abia, A.A., Adsorption isotherm studies of Cd(II), Pb(II) and Zn(II) ions bioremediation from aqueous solution using unmodified and EDTA-modified maize cob, Eclética Quím., 2007, vol. 32, no. 1, pp. 33–42. https://doi.org/10.1590/S0100-46702007000100005

    Article  CAS  Google Scholar 

  3. Rafatullah, M., Sulaiman, O., Hashim, R., and Ahmad, A., Adsorption of copper(II) onto different adsorbents, J. Dispersion Sci. Technol., 2010, vol. 31, no. 7, pp. 918–930. https://doi.org/10.1080/01932690903224003

    Article  CAS  Google Scholar 

  4. Wu, X.W., Ma, H.W., and Zhang, Y.R., Adsorption of chromium(VI) from aqueous solution by a mesoporous aluminosilicate synthesized from microcline, Appl. Clay Sci., 2010, vol. 48, no. 3, pp. 538–541. https://doi.org/10.1016/j.clay.2010.02.013

    Article  CAS  Google Scholar 

  5. Dolgormaa, A., et al., Adsorption of Cu(II) and Zn(II) ions from aqueous solution by gel/PVA-modified super-paramagnetic iron oxide nanoparticles, Molecules, 2018, vol. 23, no. 11, p. 2982. https://doi.org/10.3390/molecules23112982

    Article  CAS  PubMed Central  Google Scholar 

  6. Musumba, G., Nakiguli, C., Lubanga, C., Mukasa, P., and Ntambi, E., Adsorption of lead(II) and copper(II) ions from mono synthetic aqueous solutions using bio-char from Ficus natalensis fruits, J. Encapsulation Adsorpt. Sci., 2020, vol. 10, no. 04, pp. 71–84. https://doi.org/10.4236/jeas.2020.104004

    Article  CAS  Google Scholar 

  7. Ebrahimzadeh Rajaei, G., Aghaie, H., Zare, K., and Aghaie, M., Adsorption of Ni(II) and Cd(II) ions from aqueous solutions by modified surface of Typha latifolia L. root, as an economical adsorbent, J. Phys. Theor. Chem., 2013, vol. 9, no. 3, pp. 137–147

    Google Scholar 

  8. Taka, A.L., Fosso-Kankeu, E., Pillay, K., and Mbianda, X.Y., Removal of cobalt and lead ions from wastewater samples using an insoluble nanosponge biopolymer composite: Adsorption isotherm, kinetic, thermodynamic, and regeneration studies, Environ. Sci. Pollut. Res., 2018, vol. 25, no. 22, pp. 21752–21767. https://doi.org/10.1007/s11356-018-2055-6

    Article  CAS  Google Scholar 

  9. Zhuang, S., Yin, Y., and Wang, J., Removal of cobalt ions from aqueous solution using chitosan grafted with maleic acid by gamma radiation, Nucl. Eng. Technol., vol. 50, no. 1, pp. 211–215, 2018. https://doi.org/10.1016/j.net.2017.11.007

    Article  CAS  Google Scholar 

  10. Nadaroglu, H. and Kalkan, E., Removal of cobalt (II) ions from aqueous solution by using alternative adsorbent industrial red mud waste material, Int. J. Phys. Sci., 2012, vol. 7, no. 9 pp. 1386–1394. https://doi.org/10.5897/ijps11.1748

    Article  CAS  Google Scholar 

  11. Mnasri-Ghnimi, S. and Frini-Srasra, N., Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays, Appl. Clay Sci., 2019, vol. 179, p. 105151. https://doi.org/10.1016/j.clay.2019.105151

    Article  CAS  Google Scholar 

  12. Alasadi, T., Removal of heavy metals by adsorption of leaf papers and thermodynamic properties, Feb. 2019. https://www.researchgate.net/publication/330882681_ removal_of_heavy_metals_by_adsorption_of_leaf_papers_and_thermodynamic_properties

  13. Malik, D.S., Jain, C.K., and Yadav, A.K., Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review, Appl. Water Sci., 2017, vol. 7, no. 5, pp. 2113–2136. https://doi.org/10.1007/s13201-016-0401-8

    Article  CAS  Google Scholar 

  14. Demir Delil, A., Gülçiçek, O., and Gören, N., Optimization of adsorption for the removal of cadmium from aqueous solution using Turkish coffee grounds, Int. J. Environ. Res., 2019, vol. 13, no. 5, pp. 861–878. https://doi.org/10.1007/s41742-019-00224-6

    Article  CAS  Google Scholar 

  15. Montanher, S.F., Oliveira, E.A., and Rollemberg, M.C., Removal of metal ions from aqueous solutions by sorption onto rice bran, J. Hazard. Mater., 2005, vol. 117, no. 2–3, pp. 207–211. https://doi.org/10.1016/j.jhazmat.2004.09.015

    Article  CAS  PubMed  Google Scholar 

  16. Amer, M.W. and Awwad, A.M., Removal of As(V) from aqueous solution by adsorption onto nanocrystalline kaolinite: Equilibrium and thermodynamic aspects of adsorption, Environ. Nanotechnol. Monit. Manage., 2018, vol. 9, no. December, pp. 37–41. https://doi.org/10.1016/j.enmm.2017.12.001

    Article  Google Scholar 

  17. Yan, C.Z., Kim, M.G., Hwang, H.U., Nzioka, A.M., Sim, Y.J., and Kim, Y.J., Adsorption of heavy metals using activated carbon synthesized from the residues of medicinal herbs, Theor. Found. Chem. Eng., 2020, vol. 54, no. 5, pp. 973–982. https://doi.org/10.1134/S0040579520050474

    Article  CAS  Google Scholar 

  18. Ouasif, H., Yousfi, S., Bouamrani, M.L., El Kouali, M., Benmokhtar, S., and Talbi, M., Removal of a cationic dye from wastewater by adsorption onto natural adsorbents, J. Mater. Environ. Sci., 2013, vol. 4, no. 1, pp. 1–10.

    CAS  Google Scholar 

  19. Rao, L.N., Rohinikumar, P., and Rao, M.V., Removal of reactive yellow 145 dyes from aqueous solution using adsorption technique, World J. Pharm. Res., 2015, vol. 4, no. 3, pp. 387–401. https://www.cabdirect.org/cabdirect/search/?q=sn%3A%222277-7105%22

  20. Thitame, P.V. and Shukla, S.R., Adsorptive removal of reactive dyes from aqueous solution using activated carbon synthesized from waste biomass materials, Int. J. Environ. Sci. Technol., 2016, vol. 13, no. 2, pp. 561–570. https://doi.org/10.1007/s13762-015-0901-3

    Article  CAS  Google Scholar 

  21. Delavar, M., Bakeri, G., Hosseini, M., and Nabian, N., Synthesis and application of titania nanotubes and hydrous manganese oxide in heavy metal removal from aqueous solution: Characterization, comparative study, and adsorption kinetics, Theor. Found. Chem. Eng., 2021, vol. 55, no. 1, pp. 180–197. https://doi.org/10.1134/S004057952101005X

    Article  CAS  Google Scholar 

  22. Sadegh, H., Ali, G.A.M., Abbasi, Z., and Nadagouda, M.N., Adsorption of ammonium ions onto multi-walled carbon nanotubes, Stud. Univ. Babes-Bolyai, Chem., 2017, vol. 62, no. 2, pp. 233–245. https://doi.org/10.24193/subbchem.2017.2.18

    Article  CAS  Google Scholar 

  23. Li, X., and Zhang, L., Removing Pb2+ by adsorption over thiol-functionalized mesoporous silica, Russ. J. Phys. Chem., A, 2019, vol. 93, no. 9, pp. 1804–1808. https://doi.org/10.1134/S0036024419090310

    Article  CAS  Google Scholar 

  24. Yin, X., et al., Removal of V(V) and Pb(II) by nanosized TiO2 and ZnO from aqueous solution, Ecotoxicol. Environ. Saf., 2018, vol. 164, pp. 510–519. https://doi.org/10.1016/j.ecoenv.2018.08.066

    Article  CAS  PubMed  Google Scholar 

  25. Esmael, H.A., Lafta, A.J., Nema, N.A., Kahdum, S.H., Mousa, A.A., and Abdali, O.K., Removal of reactive yellow dye 145 from wastewaters over activated carbon that is derived from Iraqi kehdrawy date palm seeds, World Sci. News, 2015, vol. 21, pp. 77–89. http://www.worldscientificnews.com/wpcontent/uploads/2015/07/WSN-21-2015-124-136.pdf

    Google Scholar 

  26. Kanchana, V., Gomathi, T., Geetha, V., and Sudha, P.N., Adsorption analysis of Pb(II) by nanocomposites of chitosan with methyl cellulose and clay, Pharm. Lett., 2012, vol. 4, no. 4, pp. 1071–1079.

    CAS  Google Scholar 

  27. Stefan, M., et al., Synthesis and characterization of Fe3O4@ZnS and Fe3O4@Au@ZnS core–shell nanoparticles, Appl. Surf. Sci., 2014, vol. 288, pp. 180–192. https://doi.org/10.1016/j.apsusc.2013.10.005

    Article  CAS  Google Scholar 

  28. Tran, L.T., Tran, H.V., Le, T.D., Bach, G.L., and Tran, L.D., Studying Ni(II) adsorption of magnetite/graphene oxide/chitosan nanocomposite, Adv. Polym. Technol., 2019, vol. 2019, p. 8124351. https://doi.org/10.1155/2019/8124351

    Article  CAS  Google Scholar 

  29. Morari, F., Dal Ferro, N., and Cocco, E., Municipal wastewater treatment with Phragmites australis L. and Typha latifolia L. for irrigation reuse. Boron and heavy metals, Water, Air, Soil Pollut., 2015, vol. 226, no. 3, pp. 1–14. https://doi.org/10.1007/s11270-015-2336-3

    Article  CAS  Google Scholar 

  30. Moore, M.T., Tyler, H.L., and Locke, M.A., Aqueous pesticide mitigation efficiency of Typha latifolia (L.), Leersia oryzoides (L.) Sw., and Sparganium americanum Nutt., Chemosphere, 2013, vol. 92, no. 10, pp. 1307–1313. https://doi.org/10.1016/j.chemosphere.2013.04.099

    Article  CAS  PubMed  Google Scholar 

  31. Khattri, S.D. and Singh, M.K., Adsorption of basic dyes from aqueous solution by natural adsorbent, Indian J. Chem. Technol., 1999, vol. 6, no. 2, pp. 112–116.

    CAS  Google Scholar 

  32. Ebrahimzadeh Rajaei, G., Aghaie, H., Zare, K., and Aghaie, M., Adsorption of Cu(II) and Zn(II) ions from aqueous solutions onto fine powder of Typha latifolia L. root: Kinetics and isotherm studies, Res. Chem. Intermed., 2013, vol. 39, no. 8, pp. 3579–3594. https://doi.org/10.1007/s11164-012-0864-7

    Article  CAS  Google Scholar 

  33. Rezaei-Aghdam, E., Shamel, A., Khodadadi-Moghaddam, M., Ebrahimzadeh Rajaei, G., and Mohajeri, S., Synthesis of TiO2 and ZnO Nanoparticles and CTAB-stabilized Fe3O4 nanocomposite: Kinetics and thermodynamics of adsorption, Res. Chem. Intermed., 2021, vol. 47, no. 5, pp. 1759–1774. https://doi.org/10.1007/s11164-020-04363-w

    Article  CAS  Google Scholar 

  34. Nikmah, A., Taufiq, A., and Hidayat, A., Synthesis and characterization of Fe3O4/SiO2 nanocomposites, IOP Conf. Ser.: Earth Environ. Sci., 2019, vol. 276, no. 1. https://doi.org/10.1088/1755-1315/276/1/012046

  35. Pagalan, E., et al., Activated carbon from spent coffee grounds as an adsorbent for treatment of water contaminated by aniline yellow dye, Ind. Crops Prod., 2020, vol. 145, p. 111953. https://doi.org/10.1016/j.indcrop.2019.111953

    Article  CAS  Google Scholar 

  36. Yadav, L.S., Mishra, B.K., and Kumar, A., Adsorption of phenol from aqueous solutions by bael furit shell activated carbon: Kinetic, equilibrium, and mass transfer studies, Theor. Found. Chem. Eng., 2019, vol. 53, no. 1, pp. 122–131. https://doi.org/10.1134/S0040579519010184

    Article  Google Scholar 

  37. Nethaji, S., Sivasamy, A., and Mandal, A.B., Adsorption isotherms, kinetics and mechanism for the adsorption of cationic and anionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass, Int. J. Environ. Sci. Technol., 2013, vol. 10, no. 2, pp. 231–242. https://doi.org/10.1007/s13762-012-0112-0

    Article  CAS  Google Scholar 

  38. Roya Safarkar, S.K.-A. and Ebrahimzadeh Rajaei, G., The study of antibacterial properties of iron oxide nanoparticles synthesized using the extract of lichen Ramalina sinensis, Asian J. Nanosci. Mater., 2020, vol. 3, pp. 157–166. https://doi.org/10.26655/AJNANOMAT.2020.3.1

    Article  Google Scholar 

  39. Ladavos, A.K., Katsoulidis, A.P., Iosifidis, A., Triantafyllidis, K.S., Pinnavaia, T.J., and Pomonis, P.J., The BET equation, the inflection points of N2 adsorption isotherms and the estimation of specific surface area of porous solids, Microporous Mesoporous Mater., 2012, vol. 151, pp. 126–133. https://doi.org/10.1016/j.micromeso.2011.11.005

    Article  CAS  Google Scholar 

  40. Ta, T.K.H., et al., Synthesis and surface functionalization of Fe3O4–SiO2 core–shell nanoparticles with 3-glycidoxypropyltrimethoxysilane and 1,1′-carbonyldiimidazole for bio-applications, Colloids Surf., A, 2016, vol. 504, pp. 376–383. https://doi.org/10.1016/j.colsurfa.2016.05.008

    Article  CAS  Google Scholar 

  41. Helmi, M., Farimani, R., Shahtahmassebi, N., Roknabadi, M.R., and Ghows, N., Synthesis and study of structural and magnetic properties of super paramagnetic Fe3O4@SiO2 core/shell nanocomposite for biomedical applications, Nanomed. J., 2014, vol. 1, no. 2, pp. 71–78. http://nmj.mums.ac.ir/article_1700_ 5874b720aacd1aba0aa90aa6a8a2181f.pdf

  42. Wang, L.-C., Ni, X.-j., Cao, Y.-H., and Cao, G.-q., Adsorption behavior of bisphenol A on CTAB-modified graphite, Appl. Surf. Sci., 2018, vol. 428, pp. 165–170. https://doi.org/10.1016/j.apsusc.2017.07.093

    Article  CAS  Google Scholar 

  43. Awasthi, A., Jadhao, P., and Kumari, K., Clay nano-adsorbent: Structures, applications and mechanism for water treatment, SN Appl. Sci., 2019, vol. 1, no. 9, pp. 1–21. https://doi.org/10.1007/s42452-019-0858-9

    Article  CAS  Google Scholar 

  44. Ebrahimzadeh Rajaei, G., Khalili-Arjaghi, S., Fataei, E., Sajjadi, N., and Kashefi-Alasl, M., Fabrication and characterization of polymer-based nanocomposite membrane modified by magnetite nanoparticles for Cd2+ and Pb2+ removal from aqueous solutions, C. R. Chim., 2020, vol. 23, nos. 9–10, pp. 563–574. doi.org/https://doi.org/10.5802/crchim.51

    Article  CAS  Google Scholar 

  45. Oba, I.A. and Adekola, F.A., Kinetic and thermodynamic adsorption study of formic and acetic acids from aqueous solution by activated carbon derived from Moringa oleifera pods, Moroccan J. Chem., 2018, vol. 6, no. 3, pp. 492–503. https://doi.org/10.48317/IMIST.PRSM/morjchem-v6i3.10064

    Article  CAS  Google Scholar 

  46. Kuete, I.-H.T., Tchuifon, D.R.T., Ndifor-Angwafor, G.N., Kamdem, A.T., and Anagho, S.G., Kinetic, isotherm and thermodynamic studies of the adsorption of thymol blue onto powdered activated carbons from Garcinia cola nut shells impregnated with H3PO4 and KOH: Non-linear regression, J. Encapsulation Adsorpt. Sci., 2020, vol. 10, no. 01, pp. 1–27. https://doi.org/10.4236/jeas.2020.101001

    Article  CAS  Google Scholar 

  47. Gusain, D., Srivastava, V., Sillanpää, M., and Sharma, Y.C., Kinetics and isotherm study on adsorption of chromium on nano crystalline iron oxide/hydroxide: Linear and nonlinear analysis of isotherm and kinetic parameters, Res. Chem. Intermed., 2016, vol. 42, no. 9, pp. 7133–7151. https://doi.org/10.1007/s11164-016-2523-x

    Article  CAS  Google Scholar 

  48. Papegowda, P.K. and Syed, A.A., Isotherm, Kinetic and thermodynamic studies on the removal of methylene blue dye from aqueous solution using saw palmetto spent, Int. J. Environ. Res., 2017, vol. 11, no. 1, pp. 91–98. https://doi.org/10.1007/s41742-017-0010-x

    Article  CAS  Google Scholar 

  49. Narvekar, A.A., Fernandes, J.B., and Tilve, S.G., Adsorption behavior of methylene blue on glycerol based carbon materials, J. Environ. Chem. Eng., 2018, vol. 6, no. 2, pp. 1714–1725. https://doi.org/10.1016/j.jece.2018.02.016

    Article  CAS  Google Scholar 

  50. Alkan, M., Demirbaş, Ö., and Doǧan, M., Adsorption kinetics and thermodynamics of an anionic dye onto sepiolite, Microporous Mesoporous Mater., 2007, vol. 101, no. 3, pp. 388–396. https://doi.org/10.1016/j.micromeso.2006.12.007

    Article  CAS  Google Scholar 

  51. Tangde, V.M., Prajapati, S.S., Mandal, B.B., and Kulkarni, N.P., Study of kinetics and thermodynamics of removal of phosphate from aqueous solution using activated red mud, Int. J. Environ. Res., 2017, vol. 11, no. 1, pp. 39–47, 2017. https://doi.org/10.1007/s41742-017-0004-8

  52. Dada, O., Olalekan, A.P., Olatunya, A.M., and DADA, O., Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk, IOSR J. Appl. Chem., 2012, vol. 3, no. 1, pp. 38–45. https://doi.org/10.9790/5736-0313845

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Shamel or G. Ebrahimzadeh-Rajaei.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei-Aghdam, E., Shamel, A., Khodadadi-Moghaddam, M. et al. Synthesis of a Nanocomposite Containing CTAB-stabilized Fe3O4 Magnetic Nanoparticles and a Comparison between the Adsorption Behavior of Cobalt ions on the Nanocomposite and Typha latifolia L.. Theor Found Chem Eng 56, 131–140 (2022). https://doi.org/10.1134/S0040579522010110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579522010110

Keywords:

Navigation