Skip to main content
Log in

The Impact of Different Cenoses on the Thermal Characteristics of Labile Humic Substances of Typical Chernozem in Kursk Oblast

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The study of labile humic substances of typical chernozems under different land uses in Kursk oblast with the help of thermal method attests to their complex composition with participation of aliphatic and cyclic structures heterogeneous in terms of their thermal stainability. According to the Z coefficient (the ratio between weight losses in the low-temperature (<400°С) and high-temperature region (>400°С)) equal to 1.10, aliphatic compounds predominate over cyclic benzenoid compounds in the composition of labile humic substances of virgin chernozems. Under the impact of permanent cultivation of winter wheat and corn, the mineralization of the aliphatic part of labile humic substances increases, and the Z coefficient decreases to 0.81–0.96. The most intense mineralization of aliphatic fragments of labile humic substances occurs under the impact of permanent black fallow, where the Z coefficient decreases to 0.76, and inert cyclic components clearly predominate in the composition of labile humic substances. In 23 years after the conversion of the permanent black fallow into the overgrown unmanaged fallow, the composition of the labile humic substances of the typical chernozem has not undergone significant changes, though a tendency for an increase in the role of aliphatic structures has been noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Z. S. Artem’eva, Organic Matter and Granulometric System of Soil (GEOS, Moscow, 2010) [in Russian].

    Google Scholar 

  2. Z. S. Artem’eva and N. P. Kirillova, “The role of organomineral products in the aggregation and humus formation in the main types of soils in the center of the Russian Plain” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 90, 73–95 (2017).

    Google Scholar 

  3. S. L. Belopukhov, S. A. Starykh, A. N. Kupriyanov, and M. V. Grigor’eva, “The study of qualitative composition of humic acids in soddy podzolic soil by thermal analysis,” Prirodoobustroistvo, No. 3, 36–45 (2020).

    Article  Google Scholar 

  4. A. G. Kaluzhskii, N. P. Masyutenko, and M. N. Masyutenko, “Spatial variability of the content and composition of labile humic substances in ordinary chernozem depending on slope aspect, agrogenic factors, and their relationships with microbial biomass,” Vestn. Kursk. Gos. S-kh. Akad., No. 4, 36–40 (2013).

  5. M. Kershens, “Importance of humus content for soil fertility and nitrogen cycle,” Pochvovedenie, No. 10, 122–131 (1992).

    Google Scholar 

  6. V. I. Kiryushin, Agronomic Soil Science (Kolos, Moscow, 2010) [in Russian].

    Google Scholar 

  7. B. M. Kogut, “Transformation of humus status in Cultivated Chernozems,” Eurasian Soil Sci. 31(7), 721–728 (1998).

    Google Scholar 

  8. B. M. Kogut and L. Yu. Bulkina, “Comparative assessment of the methods for determination of labile forms of chernozem humus,” Pochvovedenie, No. 4, 143–145 (1987).

    Google Scholar 

  9. N. L. Kurachenko and S. V. Aleksandrova, “Mobile humic substances in the spatial variability of the aggregate level of the structural organization of chernozems,” Vestn. Krasnoyarsk. Gos. Agrar. Univ., No. 8 (71), 29–34 (2012).

  10. E. A. Lykova, N. N. Miroshnichenko, O. S. Panasenko, and O. P. Syabruk, “Labile organic matter as a factor of mobilization–immobilization of trace elements in soil,” Pochvoved. Agrokhim., No. 1 (50), 256–965 (2013).

  11. V. G. Mamontov, Z. S. Artem’eva, V. I. Lazarev, L. P. Rodionova, V. A. Krylov, and R. R. Akhmedzyanova, “Comparative characteristics of the properties of virgin, arable, and fallow ordinary chernozem in Kursk oblast,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 101, 182–201 (2020).

    Google Scholar 

  12. V. G. Mamontov, R. A. Afanas’ev, and E. L. Sokolovskaya, “Labile humic substances as a special group of organic compounds of ordinary chernozem,” Plodorodie, No. 5 (104), 15–19 (2018).

    Google Scholar 

  13. D. S. Orlov, Humic Acids of Soil (Moscow State Univ., Moscow, 1974) [in Russian].

    Google Scholar 

  14. Guide for the Analysis of Organic Matter during Agricultural Use and Intensive Cultivation of Soils, Ed. by K. V. D’yakonova (All-Union Lenin Academy of Agricultural Sciences, Moscow, 1984) [in Russian].

    Google Scholar 

  15. V. M. Semenov and B. M. Kogut, Soil Organic Matter (GEOS, Moscow, 2015) [in Russian].

    Google Scholar 

  16. D. A. Sokolov, I. I. Dmitrevskaya, N. B. Pautova, T. N. Lebedeva, V. A. Chernikov, and V. M. Semenov, “A study of soil organic matter stability using derivatography and long-term incubation methods,” Eurasian Soil Sci. 54, 487–498 (2021).

    Article  Google Scholar 

  17. N. A. Titova and B. M. Kogut, “Transformation of organic matter during agricultural use of soils,” Itogi Nauki Tekh., Ser.: Pochvoved. Agrokhim. 8, (1991).

  18. V. D. Tikhova and M. P. Sartakov, “Thermal characteristics of humic acids in peat of the Middle Ob region,” Vestn. Krasnoyarsk. Gos. Agrar. Univ., No. 11, 26–29 (2009).

  19. L. S. Travnikova, Organomineral Interactions: Role in Pedogenesis, Their Fertility, and Resistance to Degradation (Dokuchaev Soil Science Inst., Moscow, 2012) [in Russian].

    Google Scholar 

  20. L. S. Travnikova and M. Sh. Shaimukhametov, “Products of organo-mineral interaction and soil tolerance towards degradation,” in Modern Problems in Soil Science (Dokuchaev Soil Science Inst., Moscow, 2000), pp. 356–368.

    Google Scholar 

  21. V. A. Kholodov, Yu. R. Farkhodov, N. V. Yaroslavtseva, A. Yu. Aydiev, V. I. Lazarev, B. S. Ilyin, A. L. Ivanov, and N. A. Kulikova, “Thermolabile and thermostable organic matter of chernozems under different land uses,” Eurasian Soil Sci. 53, 1066–1078 (2020). https://doi.org/10.1134/S1064229320080086

    Article  Google Scholar 

  22. V. A. Chernikov, “Dynamics of soil humus compounds in a long-term stationary experiment of the Timiryazev Agricultural Academy,” Plodorodie, No. 4 (7), 34–36 (2002).

    Google Scholar 

  23. V. A. Chernikov and V. A. Konchits, “Kinetics of pyrolysis of fulvocompounds in some soil types,” Izv. Timiryazevsk. S-kh. Akad., No. 1, 125–137 (2002).

  24. V. A. Chernikov and V. A. Konchits, “The composition and properties of humic acids of chernozem with various degrees of dispersion,” Pochvovedenie, No. 12, 84–88 (1978).

    Google Scholar 

  25. S. N. Chukov, Influence of Anthropogenic Impact on Structural and Functional Parameters of Soil Organic Matter (St. Petersburg State Univ., St. Petersburg, 2001) [in Russian].

    Google Scholar 

  26. S. N. Chukov, E. D. Lodygin, and E. V. Abakumov, “Application of 13C NMR spectroscopy to the study of soil organic matter: a review of publications,” Eurasian Soil Sci. 51, 889–900 (2018). https://doi.org/10.1134/S1064229318080021

    Article  Google Scholar 

  27. M. Sh. Shaimukhametov, N. A. Titova, L. S. Travnikova, and E. M. Labinets, “Use of physical fractionation methods for the analysis of soil organic matter,” Pochvovedenie, No. 8, 131–141 (1984).

    Google Scholar 

  28. M. Sh. Shaimukhametov and E. A. Shurygina, “Thermographic and IR spectroscopic characteristics of the products of the interaction of humic acids with iron and aluminum hydroxides and silicic acid,” Pochvovedenie, No. 4, 59–72 (1980).

    Google Scholar 

  29. L. K. Shevtsova, “The program and methods for study of the humus state of soils in long-term experiments of the Geonet reference plots and polygons of agroecological monitoring,” in Influence of Long-Term Use of Fertilizers on Soil Organic Matter (Pryanishnikov Institute of Agrochemistry, Moscow, 2010), pp. 309–350.

    Google Scholar 

  30. L. K. Shevtsova, V. A. Chernikov, V. G. Sychev, M. V. Belichenko, O. V. Rukhovich, and O. I. Ivanova, “The influence of prolonged use of fertilizers on the composition, properties, and structural characteristics of humic acids in the main types of soils, Part 1,” Agrokhimiya, No. 10, 3–15 (2019).

    Google Scholar 

  31. Z. Artemyeva, N. Danchenko, Yu. Kolyagin, N. Kirillova, and B. Kogut, “Chemical structure of soil organic matter and its role in aggregate formation in haplic chernozem under the contrasting land use variants,” Catena 204, 105403 (2021). https://doi.org/10.1016/j.catena.2021.105403

    Article  Google Scholar 

  32. M. Giovanela, J. S. Crespo, M. Antunes, D. S. Adametti, A. N. Fernandes, A. Barison, C. W. P da Silva, R. G. M. Motelica-Heino, and M. M. D. Sierra, “Chemical and spectroscopic characterization of humic acids extracted from the bottom sediments of a Brazilian subtropical microbasin,” J. Mol. Struct. 981 (1–3), 111–119 (2010).

    Article  Google Scholar 

  33. J. Kucerik, M. S. Demyan, and C. Siewert, “Practical application of thermogra-vimetry in soil science. Part 4. Relationship between clay, organic carbon and organic matter contents,” J. Therm. Anal. Calorim. 123, 2441–2450 (2016). https://doi.org/10.1007/s10973-015-5141-8

    Article  Google Scholar 

  34. J. Lehmann and M. Kleber, “The contentious nature of soil organic matter,” Nature 528, 60–68 (2015).

    Article  Google Scholar 

  35. M. V. Lützow, I. Kögel-Knabner, K. Ekschmitt, E. Matzner, G. Guggenberger, B. Marschner, and H. Flessa, “Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review,” Eur. J. Soil Sci. 57, 426–445 (2006). https://doi.org/10.1111/j.1365-2389.2006.00809.x

    Article  Google Scholar 

  36. R. Pallasser, B. Minasny, and A. B. McBratney, “Soil carbon determination by thermogravimetrics,” PeerJ. 1, e6 (2013). https://peerj.com/articles/6.pdf.

    Article  Google Scholar 

  37. E. Saljnikov, D. Cakmak, and S. Rahimgdieva, “Soil organic matter stability as affected by land management in steppe ecosystem,” in Soil Processes and Current Trends in Quality Assessment (InTechOpen, London, 2013), Ch. 10, pp. 269–310. https://doi.org/10.5772/53557

  38. C. Siewert, M. S. Demyan, and J. Kučerík, “Interrelations between soil respiration and its thermal stability,” J. Therm. Anal. Calorim. 110 (1), 413–419 (2012). https://doi.org/10.1007/s10973-011-2099-z

    Article  Google Scholar 

  39. M. Wander, “Soil organic matter fractions and their relevance to soil function,” in Soil Organic Matter in Sustainable Agriculture, Ed. F. Magdoff and R. R. Weil (CRC Press, Boca Raton, FL, 2004), pp. 67–102.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Krylov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by D. Konyushkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krylov, V.A., Mamontov, V.G. The Impact of Different Cenoses on the Thermal Characteristics of Labile Humic Substances of Typical Chernozem in Kursk Oblast. Eurasian Soil Sc. 55, 452–459 (2022). https://doi.org/10.1134/S1064229322040111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322040111

Keywords:

Navigation