Skip to main content
Log in

Application of the ROMUL Mathematical Model for Estimation of CO2 Emission and Dynamics of Organic Matter in the Subantarctic Lithozems

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The specific features in the formation of a system of biologically active surface horizons (organoprofile) in the Subantarctic lithozems (Leptosols) are analyzed using mathematical modeling. Simulation experiments involve the ROMUL mathematical model. The working scenarios are compiled taking into account the specific features of the effects of climate, fauna, and vegetation of the coasts of King George Island, archipelago of the South Shetland Islands, West Antarctica. The periodicity of temperature recording (using daily or monthly average values) has little effect on the simulation results. As is shown, different localizations of the litterfall under green mosses and Antarctic hair grass (Deschampsia antarctica) lead to development of the organoprofiles differing in their structure and quality. The enrichment with nitrogen due to the vital activity of penguins increases the litterfall transformation intensity and enhances humification. Note that the results of a medium-term (50-year-long) simulation of the dynamics of organic matter pools in the lithozems with different ornithogenic impacts significantly differ in the case of a change in vegetation type and an increase in the nitrogen concentration in litterfall. Long-term (at constant climate and litterfall) computational experiments have shown that the litter and humus pools under the Subantarctic conditions reach a stable state in 200 and 500 years, respectively. Soil CO2 emission in the simulated ranges of soil forming factors can be regarded as consistent with the results of field measurements if a large part of the gross СО2 flux results from the respiration of vegetation. The compilation of scenarios for simulation experiments has shown that the field information on the pools of surface organic horizon (litter) and their quality for drained Antarctic soils is insufficient. Litter is an important indicator of the actual response of Antarctic soils to the change in soil forming factors and must be taken into account. We invite the international community of the scientists studying the soils of Antarctic to agree on the unification of descriptions of the key sites and calculations of the results of field studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. V. Abakumov, “The sources and composition of humus in some soils of West Antarctica,” Eurasian Soil Sci. 43, 499–508 (2010).

    Article  Google Scholar 

  2. E. V. Abakumov, Soils of West Antarctica (St. Petersburg St. Univ., St. Petersburg, 2011) [in Russian].

    Google Scholar 

  3. E. V. Abakumov and M. P. Andreev, “Temperature regime of humus horizons in soils of the King George Island, West Antarctica,” Vestn. S.-Peterb. Univ., Ser. 3: Biol., No. 2, 129–133 (2011).

  4. E. V. Abakumov, D. Yu. Vlasov, G. A. Gorbunov, I. A. Kozeretskaya, V. A. Krylenkov, V. E. Lagun, V. V. Lukin, and E. V. Safronova, “Content and composition of organic matter in lithozems of the King George Island, West Antarctica,” Vestn. S.-Peterb. Univ., Ser. 3: Biol., No. 2, 123–136 (2009).

  5. E. V. Abakumov, M. Zhiyanski, and R. Yaneva, “Ornithogenic factor in formation of tundra and gray humus soils on the Livingstone Island, Western Antarctica,” Russ. Ornitol. Zh. 29 (1903), 1360–1364 (2020).

  6. E. V. Abakumov and A. V. Lupachev, “Soil diversity of terrestrial ecosystems in Antarctica (in areas of Russian Antarctic stations),” Ukr. Antarkt. Zh., Nos. 10–11, 222–228 (2011/2012).

    Google Scholar 

  7. E. V. Abakumov, V. N. Pomelov, V. A. Krylenkov, and D. Yu. Vlasov, “Morphological organization of soils in West Antarctica,” Vestn. S.-Peterb. Univ., Ser. 3: Biol., No. 3, 102–116 (2008).

  8. N. I. Bazilevich and A. A. Titlyanova, Biotic Cycle on Five Continents: Nitrogen and Ash Elements in Natural Terrestrial Ecosystems (Siberian Branch, Russian Academy of Sciences, Novosibirsk, 2008) [in Russian].

  9. L. Beyer, K. Pingpank, M. Bölter, D. Schneider, and H.-P. Blume, “Variation of carbon and nitrogen storage in soils of coastal continental Antarctica (Wilkes Land),” Eurasian Soil Sci. 31, 551–554 (1998).

    Google Scholar 

  10. H.-P. Blume, L. Beyer, and D. Schneider, “Soils of the Southern Circumpolar Region and their classification,” Eurasian Soil Sci. 31, 477–485 (1998).

    Google Scholar 

  11. D. Yu. Vlasov, E. V. Abakumov, M. A. Nadporozhskaya, N. V. Kovsh, V. A. Krylenkov, V. V. Lukin, and E. V. Safronova, “Lithosols of King George Island, Western Antarctica,” Eurasian Soil Sci. 38, 681–687 (2005).

    Google Scholar 

  12. I. A. Goncharova, “Variability of annual growth and net production of green moss in the tundra sparse forests of Western Taimyr,” Lesovedenie, No. 3, 76–78 (2008).

    Google Scholar 

  13. S. V. Goryachkin, Soil Cover of the North: Structure, Genesis, Ecology, and Evolution (GEOS, Moscow, 2010) [in Russian].

  14. S. V. Goryachkin, D. A. Gilichinskii, N. S. Mergelov, D. E. Konyushkov, A. V. Lupachev, A. A. Abramov, A. V. Dolgikh, and E. P. Zazovskaya, “Soils of Antarctica: first results, problems and prospects of studies,” in Proceedings of the All-Russian Scientific Conf. Dedicated to the 100th Anniversary of M.A. Glazovskaya “Geochemistry of Landscapes and Geography of Soils” (Moscow, 2012), pp. 361–388.

  15. D. V. Karelin, “Comparison of CO2 surface fluxes in similar ecosystems in the Arctic and Antarctic,” in Proceedings of Conf. Dedicated to the 100th Anniversary of N.I. Bazilevich “Geography of Productivity and Biogeochemical Cycle of Terrestrial Landscapes,” Pushchino, April 19–22, 2010 (Institute of Geography, Russian Academy of Sciences, Moscow, 2010), pp. 77–80.

  16. D. V. Karelin and D. G. Zamolodchikov, Carbon Budget of Cryogenic Ecosystems (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  17. L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

    Google Scholar 

  18. Modeling of the Dynamics of Organic Matter in Forest Ecosystems, Ed. by V. N. Kudeyarov (Nauka, Moscow, 2007) [in Russian].

    Google Scholar 

  19. M. A. Nadporozhskaya, E. V. Abakumov, Yu. S. Khoras’kina, S. S. Bykhovets, V. N. Shanin, and A. S. Komarov, “Possible dynamics of soil organic matter in Antarctica under climate changes using the ROMUL mathematical model,” Kriosfera Zemli 21 (1), 57–65 (2017). https://doi.org/10.21782/KZ1560-7496-2017-1(57-65)

    Article  Google Scholar 

  20. D. A. Nikitin, L. V. Lysak, N. S. Mergelov, A. V. Dolgikh, E. P. Zazovskaya, and S. V. Goryachkin, “Microbial biomass, carbon pools, and CO2 emission in soils of Franz Josef land: high-arctic tundra or polar deserts?” Eurasian Soil Sci. 53, 467–484 (2020). https://doi.org/10.1134/S1064229320040110

    Article  Google Scholar 

  21. I. Yu. Parnikoza, E. V. Abakumov, I. V. Dikii, D. V. Pilipenko, P. P. Shvidun, O. A. Poronnik, I. A. Kozeretskaya, and V. A. Kunakh, “Ornithogenic localities of Deschampsia antarctica near the Argentine Islands (Maritime Antarctica),” Russ. Ornitol. Zh. 23 (1056), 3095–3107 (2014).

    Google Scholar 

  22. Antarctic Research and Investigation. Subprogram., Arctic and Antarctic Research Institute (AARI). http://www.aari.aq. Cited March 28, 2021.

  23. I. V. Priputina, S. S. Bykhovets, P. V. Frolov, O. G. Chertov, I. N. Kurganova, V. O. Lopes de Gerenyu, D. V. Sapronov, and T. N. Mjakshina, “Application of mathematical models ROMUL and Romul_Hum for estimating CO2 emission and dynamics of organic matter in Albic Luvisol under deciduous forest in the south of Moscow oblast,” Eurasian Soil Sci. 53, 1480–1491 (2020). https://doi.org/10.1134/S1064229320100154

    Article  Google Scholar 

  24. N. I. P’yavchenko, “Growth of phytomass and accumulation rate of peat,” in Productivity Improvement of Wetland Forests (Leningrad Scientific Research Institute of Forestry, Leningrad, 1983), pp. 42–46.

    Google Scholar 

  25. A. S. Komarov, E. V. Zubkova, S. L. Zudin, O. G. Chertov, M. A. Nadporozhskaya, and S. S. Bykhovets, RF Patent No. 2018614584 (10 April 2018).

  26. O. G. Chertov and A. S. Komarov, “Theoretical approaches to modelling the dynamics of soil organic matter,” Eurasian Soil Sci. 46, 845–853 (2013). https://doi.org/10.1134/S1064229313080012

    Article  Google Scholar 

  27. O. G. Chertov, A. S. Komarov, M. A. Nadporozhskaya, A. V. Mikhailov, S. S. Bykhovets, S. L. Zudin, and E. V. Zubkova, ROMUL: Simulation Model of Organic Matter Dynamics in Forest Soils (St. Petersburg St. Univ., St. Petersburg, 2007) [in Russian].

    Google Scholar 

  28. S. N. Chukov, E. V. Abakumov, and V. M. Tomashunas, “Characterization of humic acids from Antarctic soils by nuclear magnetic resonance,” Eurasian Soil Sci. 48, 1207–1211 (2015). https://doi.org/10.1134/S1064229315110046

    Article  Google Scholar 

  29. O. V. Shpak and N. Yu. Shmakova, “Primary production of mosses in the Khibiny (Kola Peninsula),” Rastit. Resur. 46 (2), 42–50 (2010).

    Google Scholar 

  30. L. Beyer, K. Pingpank, M. Bölter, and R. D. Seppelt, “Soil organic matter storage in cold soils of coastal Eastern Antarctica (Casey Station, Wilkes Land),” in Cryosols, Ed. by J. M. Kimble (Springer-Verlag, Berlin, 2004), pp. 509–524. https://doi.org/10.1007/978-3-662-06429-0_25

  31. J.V. De Souza Carvalho, E. De Sá Mendonça, N. La Scala Jr., C. Reis, E. L. Reis and C. E. G. R. Schaefer, “CO2–C losses and carbon quality of selected Maritime Antarctic soils,” Antarct. Sci. 25 (1), 11–18 (2013). https://doi.org/10.1017/S0954102012000648

    Article  Google Scholar 

  32. O. G. Chertov, A. S. Komarov, M. A. Nadporozhskaya, S. S. Bykhovets, and S. L. Zudin, “ROMUL—a model of forest soil organic matter dynamics as a substantial tool for forest ecosystem modelling,” Ecol. Model. 138 (1–3), 289–308 (2001). https://doi.org/10.1016/S0304-3800(00)00409-9

    Article  Google Scholar 

  33. J. Fabiszewski and B. Wojtuń, “Chemical composition of some dominating plants in the maritime Antarctic tundra (King George Island),” Bibl. Lichenol. 75, 79–91 (2000).

    Google Scholar 

  34. J. Fabiszewski and B. Wojtuń, “The occurrence and development of peat mounds on King George Island (Maritime Antarctic),” Acta Soc. Bot. Pol. 66 (2), 223–229 (1997). https://doi.org/10.5586/asbp.1997.029

    Article  Google Scholar 

  35. I. E. Friedmann, “Endolithic microorganisms in Antarctic cold desert,” Science 215 (4536), 1045–1053 (1982). https://doi.org/10.1126/science.215.4536.1045

    Article  Google Scholar 

  36. M. Fritz, B. N. Deshpande, F. Bouchard, E. Högström, J. Malenfant-Lepage, A. Morgenstern, A. Nieuwendam, et al., “Future avenues for permafrost science from the perspective of early career researchers,” Cryosphere 9 (4), 1715–1720 (2015). https://doi.org/10.5194/tc-9-1715-2015

    Article  Google Scholar 

  37. P. Hill, J. Farrar, P. Roberts, M. Farrell, H. Grant, K. K. Newsham, D. W. Hopkins, et al., “Vascular plant success in a warming Antarctic may be due to efficient nitrogen acquisition,” Nat. Clim. Change 1, 50–53 (2011). https://doi.org/10.1038/nclimate1060

    Article  Google Scholar 

  38. F. Keuper, B. Wild, M. Kummu, Ch. Beer, G. Blume-Werry, S. Fontaine, K. Gavazov, et al., “Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming,” Nat. Geosci. 13, 560–565 (2020). https://doi.org/10.1038/s41561-020-0607-0

    Article  Google Scholar 

  39. N. La Scala Jr., E. de Sá Mendonça, J.V. de Souza, A. R. Panosso, F. N. B. Simas, and C. E. G. R. Schaefer, “Spatial and temporal variability in soil CO2–C emissions and relation to soil temperature at King George Island, maritime Antarctica,” Polar Sci. 3 (4), 479–487 (2010). https://doi.org/10.1016/j.polar.2010.07.001

    Article  Google Scholar 

  40. J. López-Martínez, T. Schmid, E. Serrano, S. Mink, A. Nieto, and S. Guillaso, “Geomorphology and surface landforms distribution in selected ice-free areas in the South Shetland islands, Northern Antarctic Peninsula region,” Cuad. Invest. Geogr. 42 (2), 435–455 (2016). https://doi.org/10.18172/cig.2965

    Article  Google Scholar 

  41. A. V. Lupachev, E. V. Abakumov, S. V. Goryachkin, and A. A. Veremeeva, “Soil cover of the Fildes Peninsula (King George Island, West Antarctica),” Catena 193, 104613 (2020). https://doi.org/10.1016/j.catena.2020.104613

    Article  Google Scholar 

  42. V. Meentemeyer, “Macroclimate and lignin control of litter decomposition rates,” Ecology 59 (3), 125–132 (1978). https://doi.org/10.2307/1936576

    Article  Google Scholar 

  43. R. F. M. Michel, C. E. G. R. Schaefer, L. Dias, F. N. B. Simas, V. Benites, and E. S. Mendonça, “Ornithogenic Gelisols (Cryosols) from Maritime Antarctica: pedogenesis, vegetation and carbon studies,” Soil Sci. Soc. Am. J. 70 (4), 1370–1376 (2006). https://doi.org/10.2136/sssaj2005.0178

    Article  Google Scholar 

  44. M. A. Nadporozhskaya, O. G. Chertov, S. S. Bykhovets, C. H. Shaw, E. Yu. Maksimova, and E. V. Abakumov, “Recurring surface fires cause soil degradation of forest land: a simulation experiment with the EFIMOD model,” Land Degrad. Dev. 29 (7), 2222–2232 (2018). https://doi.org/10.1002/ldr.3021

    Article  Google Scholar 

  45. H. M. Prather, A. Casanova-Katny, A. F. Clements, M. W. Chmielewski, M. A. Balkan, E. E. Shortlidge, T. N. Rosenstiel, and S. M. Eppley, “Species-specific effects of passive warming in an Antarctic moss system,” R. Soc. Open Sci. 6 (11), 190744 (2019). https://doi.org/10.1098/rsos.190744

    Article  Google Scholar 

  46. E. A. G. Schuur, A. D. McGuire, G. Grosse, J. W. Harden, D. J. Hayes, G. Hugelius, C. D. Koven, et al., “Climate change and the permafrost carbon feedback,” Nature 520, 171–179 (2015). https://doi.org/10.1038/nature14338

    Article  Google Scholar 

  47. F. N. B. Simas, C. E. G. R. Schaefer, V. F. Melo, M. R. Albuquerque-Filho, R. F. M. Michel, V. V. Pereira, M. R. R. Gomes, and L. M. da Costa, “Ornithogenic Cryosols from Maritime Antarctica: phosphatization as a soil forming process,” Geoderma 138 (3–4), 191–203 (2007). https://doi.org/10.1016/j.geoderma.2006.11.011

    Article  Google Scholar 

  48. R. Vasilevich, E. Lodygin, V. Beznosikov, and E. Abakumov, “Molecular composition of raw peat and humic substances from permafrost peat soils of European Northeast Russia as climate change markers,” Sci. Total Environ. 615, 1229–1238 (2018). https://doi.org/10.1016/j.scitotenv.2017.10.053

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russia Foundation for Basic Research (projects nos. 19-54-18003 Bolg_a “Assessment of the Regional Contribution of the Soils of Antarctic Islands to the Global Carbon Balance Taking into Account the Degree of Organic Matter Stabilization and Humification” and 19-05-5-107 “The role of microparticles of organic carbon in degradation of ice cover of polar regions of the Earth and in the process of soil-like bodies formation”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Nadporozhskaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Chirikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadporozhskaya, M.A., Bykhovets, S.S. & Abakumov, E.V. Application of the ROMUL Mathematical Model for Estimation of CO2 Emission and Dynamics of Organic Matter in the Subantarctic Lithozems. Eurasian Soil Sc. 55, 413–424 (2022). https://doi.org/10.1134/S1064229322040123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322040123

Keywords:

Navigation