Skip to main content
Log in

A Noval Cation–Anion Absorbent of Tannin-Dialdehyde Carboxymethyl Cellulose for Removal of Cr(VI) and Ni(II) from Aqueous Solutions with High Adsorption Capacity

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A novel cation–anion adsorbent based on dialdehyde carboxymethyl cellulose (DCMC) and tannin (TA) was produced. The obtained absorbents were characterized by the scanning electron microscopy, energy dispersive spectrometer, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The influences of absorbent dosage, pH values, initial concentration and temperature on Cr(VI) adsorption and Ni(II) adsorption were discussed. Adsorption results were evaluated by four kinetic models and four adsorption isotherms fitting. The adsorption capacities of Cr(VI) and Ni(II) on TA/DCMC were 281.94 mg/g and 43.68 mg/g, respectively. The adsorption kinetics of Cr(VI) and Ni(II) on TA/DCMC were both consistent with the pseudo-second-order kinetics model. Besides, the adsorption data of Cr(VI) fitted into the Langmuir model and the adsorption results of Ni(II) fitted into the Freundlich model. Thermodynamic analysis demonstrated the adsorption was endothermic, spontaneous, and entropy increased process. The restrained adsorption followed the order Cl > NO 3 > H2PO 4 > HCO 3 for Cr(VI) adsorption and Pb(II) > Ca(II) > Cu(II) > Zn(II) for Ni(II). After 4 recycles, the Cr(VI) and Ni(II) adsorption capacities were 52.89% and 68.95% of the absorbent in first use, respectively. The absorbent shows great potential in water treatment field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Chai WS, Cheun JY, Kumar PS et al (2021) A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J Clean Prod 296:126589. https://doi.org/10.1016/j.jclepro.2021.126589

    Article  CAS  Google Scholar 

  2. Chen B, Chen YC, Xu LF et al (2020) Research and development on industrial heavy metal wastewater treatment technology. Earth Environ Sci 585:012051. https://doi.org/10.1088/1755-1315/585/1/012051

    Article  Google Scholar 

  3. Okoli BJ, Modise JS (2019) Sequestration of Pb(II) and Cr(VI) from aqueous environment using low-cost immobilized tannin resin. SN Appl Sci 1:194. https://doi.org/10.1007/s42452-019-0199-8

    Article  CAS  Google Scholar 

  4. Guarin-Romero JR, Rodruguez-Estupinan P, Giraldo L et al (2019) Simple and competitive adsorption study of nickel(II) and chromium(III) on the surface of the brown algae Durvillaea antarctica. ACS Omega 4:18147–18158. https://doi.org/10.1021/acsomega.9b02061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hyder AHMG, Begum SA, Egiebor NO (2015) Adsorption isotherm and kinetic studies of hexavalent chromium removal from aqueous solution onto bone char. J Environ Chem Eng 3:1329–1336. https://doi.org/10.1016/j.jece.2014.12.005

    Article  CAS  Google Scholar 

  6. Magdy YH, Altaher H, Yaqout A (2021) Sustainable adsorption removal of nickel and chromium on eco-friendly industrial waste: equilibrium study. Chem Chem Technol 15:161–169. https://doi.org/10.23939/chcht15.02.161

    Article  CAS  Google Scholar 

  7. Gan M, Huang DL, Chen F et al (2021) Enhanced Cr(VI) reduction and Cr(III) coprecipitation through the synergistic effect between sulfide minerals and chemoautotrophic decomposer. J Environ Chem Eng 9:105942. https://doi.org/10.1016/j.jece.2021.105942

    Article  CAS  Google Scholar 

  8. Ao M, Chen XT, Deng THB et al (2022) Chromium biogeochemical behaviour in soil–plant systems and remediation strategies: a critical review. J Hazard Mater 424:127233. https://doi.org/10.1016/j.jhazmat.2021.127233

    Article  CAS  PubMed  Google Scholar 

  9. Hajizadeh Z, Valadi K, Taheri-Ledari R et al (2020) Convenient Cr(VI) removal from aqueous samples: executed by a promising clay-based catalytic system, magnetized by Fe3O4 nanoparticles and functionalized with humic acid. ChemistrySelect 5:2441. https://doi.org/10.1002/slct.201904672

    Article  CAS  Google Scholar 

  10. Abdulaziz MA, Bakri AA, Al-Zaharini SA et al (2019) Removal of hexavalent chromium from aqueous solution by the pod of acacia gerrardii. Pol J Chem Technol 21:14–19. https://doi.org/10.2478/pjct-2019-0014

    Article  CAS  Google Scholar 

  11. Qu YP, Li XJ, Lin L et al (2021) Study on the adsorption of nickel (II) in water by modified dried duckweed. E 3S Web Conf 245:03083. https://doi.org/10.1051/e3sconf/202124503083

    Article  CAS  Google Scholar 

  12. Djaenudin W, Hariyadi HR et al (2017) Removal of nickel ion from electroplating wastewater using double chamber electrodeposition cell (DCEC) reactor partitioned with water hyacinth (Eichhornia crassipes) leaves. IOP Conf Ser 60:012020. https://doi.org/10.1088/1755-1315/60/1/012020

    Article  Google Scholar 

  13. He ZJ, Song H, Cui YN et al (2014) Porous spherical cellulose carrier modified with polyethyleneimine and its adsorption for Cr(III) and Fe(III) from aqueous solutions. Chin J Chem Eng 22:984–990. https://doi.org/10.1016/j.cjche.2014.07.001

    Article  CAS  Google Scholar 

  14. Zhao CL, Zheng HL, Sun YJ et al (2016) Fabrication of tannin-based dithiocarbamate biosorbent and its application for Ni(II) ion removal. Water Air Soil Poll 228:1–15. https://doi.org/10.1007/s11270-017-3593-0

    Article  CAS  Google Scholar 

  15. Eivazzadeh-Keihan R, Radinekiyan F, Asgharnasl S et al (2020) A natural and eco-friendly magnetic nanobiocomposite based on activated chitosan for heavy metals adsorption and the in-vitro hyperthermia of cancer therapy. J Mater Res Technol 9(6):12244–12259. https://doi.org/10.1016/j.jmrt.2020.08.096

    Article  CAS  Google Scholar 

  16. Baghani AN, Mahvi AH, Gholami M et al (2016) One-pot synthesis, characterization and adsorption studies of amine-functionalized magnetite nanoparticles for removal of Cr (VI) and Ni (II) ions from aqueous solution: kinetic, isotherm and thermodynamic studies. J Environ Health Sci 14:11. https://doi.org/10.1186/s40201-016-0252-0

    Article  CAS  Google Scholar 

  17. Awual MR, Yaita T, Taguchi T et al (2014) Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent. J Hazard Mater 278:227–235. https://doi.org/10.1016/j.jhazmat.2014.06.011

    Article  CAS  PubMed  Google Scholar 

  18. Maleki A, Hajizadeh Z, Sharifi V et al (2019) A green, porous and eco-friendly magnetic geopolymer adsorbent for heavy metals removal from aqueous solutions. J Clean Prod 215:1233–1245. https://doi.org/10.1016/j.jclepro.2019.01.084

    Article  CAS  Google Scholar 

  19. Li ZM, Zou P, Yang JZ et al (2020) A functionalized tannin-chitosan bentonite composite with superior adsorption capacity for Cr(VI). J Polym Eng 41:34–43. https://doi.org/10.1515/polyeng-2020-0133

    Article  CAS  Google Scholar 

  20. Lugo L, Martin A, Diaz J et al (2020) Implementation of modified acacia tannin by Mannich reaction for removal of heavy metals (Cu, Cr and Hg). Water-Sui 12:352. https://doi.org/10.3390/w12020352

    Article  Google Scholar 

  21. Pei Y, Chu S, Chen Y et al (2017) Tannin-immobilized cellulose hydrogel fabricated by a homogeneous reaction as a potential adsorbent for removing cationic organic dye from aqueous solution. Int J Bio Macromol 103:254–260. https://doi.org/10.1016/j.ijbiomac.2017.05.072

    Article  CAS  Google Scholar 

  22. Issaoui H, Sallem F, Lafaille J et al (2021) Biosorption of heavy metals from water onto phenolic foams based on tannins and lignin alkaline liquor. Int J Environ Res 15:369–381. https://doi.org/10.1007/s41742-021-00313-5

    Article  CAS  Google Scholar 

  23. Chen L, Zhou HJ, Hao L et al (2020) Dialdehyde carboxymethyl cellulose-zein conjugate as water-based nanocarrier for improving the efficacy of pesticides. Ind Crop Prod 150:112358. https://doi.org/10.1016/j.indcrop.2020.112358

    Article  CAS  Google Scholar 

  24. Dacrory S, Haggag EA, Masoud AM et al (2020) Innovative synthesis of modified cellulose derivative as a uranium adsorbent from carbonate solutions of radioactive deposits. Cellulose 27:7093–7108. https://doi.org/10.1007/s10570-020-03272-w

    Article  CAS  Google Scholar 

  25. Asere TG, Mincke S, Folens K et al (2019) Dialdehyde carboxymethyl cellulose cross-linked chitosan for the recovery of palladium and platinum from aqueous solution. React Funct Polym 141:145–154. https://doi.org/10.1016/j.reactfunctpolym.2019.05.008

    Article  CAS  Google Scholar 

  26. Tan H, Wu B, Li C et al (2015) Collagen cryogel cross-linked by naturally derived dialdehyde carboxymethyl cellulose. Carbohyd Polym 129:17–24. https://doi.org/10.1016/j.carbpol.2015.04.029

    Article  CAS  Google Scholar 

  27. Li HL, Wu B, Mu CD et al (2011) Concomitant degradation in periodate oxidation of carboxymethyl cellulose. Carbohyd Polym 84:881–886. https://doi.org/10.1016/j.carbpol.2010.12.026

    Article  CAS  Google Scholar 

  28. Li ZM, Wu WW, Jiang WY et al (2020) Preparation and regeneration of a thermo-sensitive adsorbent material: methyl cellulose/calcium alginate beads (MC/CABs). Polym Bull 77:1707–1728. https://doi.org/10.1007/s00289-019-02808-w

    Article  CAS  Google Scholar 

  29. Jiang XL, Yang Z, Peng YF et al (2016) Preparation, characterization and feasibility study of dialdehyde carboxymethyl cellulose as a novel crosslinking reagent. Carbohyd Polym 137:631–641. https://doi.org/10.1016/j.carbpol.2015.10.078

    Article  CAS  Google Scholar 

  30. Wan CC, Li J (2016) Graphene oxide/cellulose aerogels nanocomposite: preparation, pyrolysis, and application for electromagnetic interference shielding. Carbohyd Polym 150:172–179. https://doi.org/10.1016/j.carbpol.2016.05.051

    Article  CAS  Google Scholar 

  31. Lee J, Park S, Roh H et al (2018) Preparation and characterization of superabsorbent polymers based on starch aldehydes and carboxymethyl cellulose. Polymers 10:605. https://doi.org/10.3390/polym10060605

    Article  CAS  PubMed Central  Google Scholar 

  32. Yu JG, Chang PR, Ma XF (2010) The preparation and properties of dialdehyde starch and thermoplastic dialdehyde starch. Carbohyd Polym 79:296–300. https://doi.org/10.1016/j.carbpol.2009.08.005

    Article  CAS  Google Scholar 

  33. Zhang LM, Liu P, Wang YG et al (2011) Study on physico–chemical properties of dialdehyde yam starch with different aldehyde group contents. Thermochim Acta 512:196–201. https://doi.org/10.1016/j.tca.2010.10.006

    Article  CAS  Google Scholar 

  34. Eivazzadeh-Keihan R, Khalili F, Aliabadi HAM et al (2020) Alginate hydrogel-polyvinyl alcohol/silk fibroin/magnesium hydroxide nanorods: a novel scaffold with biological and antibacterial activity and improved mechanical properties. Int J Biol Macromol 162:1959–1971. https://doi.org/10.1016/j.ijbiomac.2020.08.090

    Article  CAS  PubMed  Google Scholar 

  35. Maleki A, Firouzi-Haji R, Hajizadeh Z (2018) Magnetic guanidinylated chitosan nanobiocomposite: a green catalyst for the synthesis of 1,4-dihydropyridines. Int J Biol Macromol 116:320–326. https://doi.org/10.1016/j.ijbiomac.2018.05.035

    Article  CAS  PubMed  Google Scholar 

  36. Hu T, Liu Q, Liu QZ et al (2019) Toxic Cr removal from aqueous media using catechol-amine copolymer coating onto as-prepared cellulose. Carbohyd Polym 209:291–298. https://doi.org/10.1016/j.carbpol.2019.01.046

    Article  CAS  Google Scholar 

  37. Nakajima A, Baba Y (2004) Mechanism of hexavalent chromium adsorption by persimmon tannin gel. Water Res 38:2859–2864. https://doi.org/10.1016/j.watres.2004.04.005

    Article  CAS  PubMed  Google Scholar 

  38. Zheng HJ, Zhang ST, Yang CY et al (2021) Simultaneous removal of Ni(II) and Cr(VI) from aqueous solution by froth flotation using PNIPAM-CS intelligent nano-hydrogels as collector. J Mol Liq 342:117551. https://doi.org/10.1016/j.molliq.2021.117551

    Article  CAS  Google Scholar 

  39. Monser L, Adhoum N (2009) Tartrazine modified activated carbon for the removal of Pb(II), Cd(II) and Cr(III). J Hazard Mater 161:263–269. https://doi.org/10.1016/j.jhazmat.2008.03.120

    Article  CAS  PubMed  Google Scholar 

  40. Maleki A, Mohammad M, Emdadi Z et al (2020) Adsorbent materials based on a geopolymer paste for dye removal from aqueous solutions. Arab J Chem 13:3017–3025. https://doi.org/10.1016/j.arabjc.2018.08.011

    Article  CAS  Google Scholar 

  41. Yao QX, Xie JJ, Liu JX et al (2014) Adsorption of lead ions using a modified lignin hydrogel. J Polym Res 21:465. https://doi.org/10.1007/s10965-014-0465-9

    Article  CAS  Google Scholar 

  42. D’Arcy M, Weiss D, Bluck M et al (2011) Adsorption kinetics, capacity and mechanism of arsenate and phosphate on a bifunctional TiO2–Fe2O3 bi-composite. J Colloid Interf Sci 364:205–212. https://doi.org/10.1016/j.jcis.2011.08.023

    Article  CAS  Google Scholar 

  43. Cantuaria ML, Neto AFD, Nascimento ES et al (2016) Adsorption of silver from aqueous solution onto pre-treated bentonite clay: complete batch system evaluation. J Clean Prod 112:1112–1121. https://doi.org/10.1016/j.jclepro.2015.07.021

    Article  CAS  Google Scholar 

  44. Cheng C, Jia MY, Cui LL et al (2020) Adsorption of Cr(VI) ion on tannic acid/graphene oxide composite aerogel: kinetics, equilibrium, and thermodynamics studies. Biomass Convers Bior. https://doi.org/10.1007/s13399-020-00899-4

    Article  Google Scholar 

  45. Sun XB, Zhang JY, Ding GW et al (2020) Tannin-based biosorbent encapsulated into calcium alginate beads for Cr(VI) removal. Water Sci Technol 81:936–948. https://doi.org/10.2166/wst.2020.178

    Article  CAS  PubMed  Google Scholar 

  46. Kummer G, Schonhart M, Fernandes MG et al (2018) Development of nanofibers composed of chitosan/Nylon 6 and tannin/nylon 6 for effective adsorption of Cr(VI). J Polym Environ 26:4073–4084. https://doi.org/10.1007/s10924-018-1281-9

    Article  CAS  Google Scholar 

  47. Xu QH, Wang YL, Jin LQ et al (2017) Adsorption of Cu (II), Pb (II) and Cr (VI) from aqueous solutions using black wattle tannin-immobilized nanocellulose. J Hazard Mater 339:91–99. https://doi.org/10.1016/j.jhazmat.2017.06.005

    Article  CAS  PubMed  Google Scholar 

  48. Aloma I, Martin-Lara MA, Rodriguez IL et al (2012) Removal of nickel (II) ions from aqueous solutions by biosorption on sugarcane bagasse. J Taiwan Inst Chem E 43:275–281. https://doi.org/10.1016/j.jtice.2011.10.011

    Article  CAS  Google Scholar 

  49. Thevannan A, Mungroo R, Niu CH (2010) Biosorption of nickel with barley straw. Bioresour Technol 101:1776–1780. https://doi.org/10.1016/j.biortech.2009.10.035

    Article  CAS  PubMed  Google Scholar 

  50. Amin M, Chetpattananondh P (2019) Biochar from extracted marine Chlorella sp. residue for high efficiency adsorption with ultrasonication to remove Cr(VI), Zn(II) and Ni(II). Bioresour Technol 289:121578. https://doi.org/10.1016/j.biortech.2019.121578

    Article  CAS  PubMed  Google Scholar 

  51. Bao SY, Yang WW, Wang YJ (2020) Highly efficient and ultrafast removal of Cr(VI) in aqueous solution to ppb level by poly(allylamine hydrochloride) covalently cross-linked amino-modified graphene oxide. J Hazard Mater 409:124470. https://doi.org/10.1016/j.jhazmat.2020.124470

    Article  CAS  PubMed  Google Scholar 

  52. Yuan CB, Zhang Y, Yao JS et al (2021) Facile synthesis of polyethylene glycol@tannin-amine microsphere towards Cr(VI) removal. Polymers 13:1035. https://doi.org/10.3390/polym13071035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kong QP, Wei JY, Hu Y et al (2019) Fabrication of terminal amino hyperbranched polymer modified graphene oxide and its prominent adsorption performance towards Cr(VI). J Hazard Mater 363:161–169. https://doi.org/10.1016/j.jhazmat.2018.09.084

    Article  CAS  PubMed  Google Scholar 

  54. Peng GL, Deng SB, Liu FL et al (2019) Superhigh adsorption of nickel from electroplating wastewater by raw and calcined electroplating sludge waste. J Clean Prod 246:118948. https://doi.org/10.1016/j.jclepro.2019.118948

    Article  CAS  Google Scholar 

  55. Lu SQ, Li HM, Sun JY et al (2018) Promoting the methanol oxidation catalytic activity by introducing surface nickel on platinum nanoparticles. Nano Res 11:2058–2068. https://doi.org/10.1007/s12274-017-1822-x

    Article  CAS  Google Scholar 

  56. Wang YY, Ren FQ, Lou ZN et al (2021) Hydroxyl-assisted nitrogen-containing group modified persimmon tannin with enhanced recovery capacity for Mo(VI) in aqueous solution. J Chem Technol Biot 96:188–198. https://doi.org/10.1002/jctb.6527

    Article  CAS  Google Scholar 

  57. Jiang WY, Xing YH, Wang TS et al (2020) Green synthesis of tannin-polyethylenimine adsorbent for removal of Cu(II) from aqueous solution. J Chem Eng Data 65:5593–5605. https://doi.org/10.1021/acs.jced.0c00720

    Article  CAS  Google Scholar 

Download references

Funding

Financial support from Guangxi Science Foundation Funded Project (Grant No. 2021GXNSFAA075006). Open Project of Guangxi Key Laboratory of Bio-refinery (Grant No. GXKLB20-01). The Undergraduates Innovation and Entrepreneurship Program in Guangxi (Grant No. 202110593198).

Author information

Authors and Affiliations

Authors

Contributions

All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Corresponding authors

Correspondence to Zhongmin Li or Guangtao Wei.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest regarding this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, M., Yan, W., Zhang, L. et al. A Noval Cation–Anion Absorbent of Tannin-Dialdehyde Carboxymethyl Cellulose for Removal of Cr(VI) and Ni(II) from Aqueous Solutions with High Adsorption Capacity. J Polym Environ 30, 3495–3514 (2022). https://doi.org/10.1007/s10924-022-02451-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02451-z

Keywords

Navigation