Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-crystalline TiO2 nanoparticles for stable and efficient perovskite modules

Abstract

Despite the remarkable progress in power conversion efficiency of perovskite solar cells, going from individual small-size devices into large-area modules while preserving their commercial competitiveness compared with other thin-film solar cells remains a challenge. Major obstacles include reduction of both the resistive losses and intrinsic defects in the electron transport layers and the reliable fabrication of high-quality large-area perovskite films. Here we report a facile solvothermal method to synthesize single-crystalline TiO2 rhombohedral nanoparticles with exposed (001) facets. Owing to their low lattice mismatch and high affinity with the perovskite absorber, their high electron mobility and their lower density of defects, single-crystalline TiO2 nanoparticle-based small-size devices achieve an efficiency of 24.05% and a fill factor of 84.7%. The devices maintain about 90% of their initial performance after continuous operation for 1,400 h. We have fabricated large-area modules and obtained a certified efficiency of 22.72% with an active area of nearly 24 cm2, which represents the highest-efficiency modules with the lowest loss in efficiency when scaling up.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of electron mobility of TiO2-based ETL and interfacial defect density of TiO2/perovskite interface on the FF loss.
Fig. 2: Morphology and characterization of single-crystalline TiO2 nanoparticles.
Fig. 3: Comparison of NP- and SC-based device photovoltaic performance and characterization.
Fig. 4: Interfacial charge transfer dynamics of perovskite films based on the NP and SC substrates.
Fig. 5: Module architecture and performance, and small-sized device’s stability.

Similar content being viewed by others

Data availability

The data for this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

The finite-element method codes used in this work are available from the corresponding authors upon reasonable request.

References

  1. Yoo, J. J. et al. Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021).

    Article  CAS  Google Scholar 

  2. Liu, Z. et al. A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability. Nat. Energy 5, 596–604 (2020).

    Article  CAS  Google Scholar 

  3. Park, B.-W. et al. Stabilization of formamidinium lead triiodide α-phase with isopropylammonium chloride for perovskite solar cells. Nat. Energy 6, 419–428 (2021).

    Article  CAS  Google Scholar 

  4. Li, Z. et al. Scalable fabrication of perovskite solar cells. Nat. Rev. Mater. 3, 18017 (2018).

    Article  CAS  Google Scholar 

  5. Werner, J. et al. Learning from existing photovoltaic technologies to identify alternative perovskite module designs. Energy Environ. Sci. 13, 3393–3403 (2020).

    Article  CAS  Google Scholar 

  6. Lee, S. W., Bae, S., Kim, D. & Lee, H. S. Historical analysis of high-efficiency, large-area solar cells: toward upscaling of perovskite solar cells. Adv. Mater. 32, 2002202 (2020).

    Article  CAS  Google Scholar 

  7. Peng, J. et al. Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells. Science 371, 390–395 (2021).

    Article  CAS  Google Scholar 

  8. Stolterfoht, M. et al. Approaching the fill factor Shockley–Queisser limit in stable, dopant-free triple cation perovskite solar cells. Energy Environ. Sci. 10, 1530–1539 (2017).

    Article  CAS  Google Scholar 

  9. Kim, D. H., Whitaker, J. B., Li, Z., van Hest, M. F. A. M. & Zhu, K. Outlook and challenges of perovskite solar cells toward terawatt-scale photovoltaic module technology. Joule 2, 1437–1451 (2018).

    Article  CAS  Google Scholar 

  10. Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019).

    Article  CAS  Google Scholar 

  11. Kim, M. et al. Enhanced electrical properties of Li-salts doped mesoporous TiO2 in perovskite solar cells. Joule 5, 659–672 (2021).

    Article  CAS  Google Scholar 

  12. Kim, G. et al. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 370, 108–112 (2020).

    Article  CAS  Google Scholar 

  13. Marchioro, A. et al. Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nat. Photon. 8, 250–255 (2014).

    Article  CAS  Google Scholar 

  14. Edri, E. et al. Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). Nano Lett. 14, 1000–1004 (2014).

    Article  CAS  Google Scholar 

  15. Yang, Z. et al. Device physics of back-contact perovskite solar cells. Energy Environ. Sci. 13, 1753–1765 (2020).

    Article  CAS  Google Scholar 

  16. Wang, Y., Yue, Y., Yang, X. & Han, L. Toward long-term stable and highly efficient perovskite solar cells via effective charge transporting materials. Adv. Energy Mater. 8, 1800249 (2018).

    Article  CAS  Google Scholar 

  17. Shahvaranfard, F. et al. Engineering of the electron transport layer/perovskite interface in solar cells designed on TiO2 rutile nanorods. Adv. Funct. Mater. 30, 1909738 (2020).

    Article  CAS  Google Scholar 

  18. Giordano, F. et al. Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nat. Commun. 7, 10379 (2016).

    Article  CAS  Google Scholar 

  19. Zhou, H. et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014).

    Article  CAS  Google Scholar 

  20. Peng, J. et al. Efficient indium-doped TiOx electron transport layers for high-performance perovskite solar cells and perovskite-silicon tandems. Adv. Energy Mater. 7, 1601768 (2017).

    Article  CAS  Google Scholar 

  21. Chen, J., Tao, H. B. & Liu, B. Unraveling the intrinsic structures that influence the transport of charges in TiO2 electrodes. Adv. Energy Mater. 7, 1700886 (2017).

    Article  CAS  Google Scholar 

  22. Tan, H. et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722–726 (2017).

    Article  CAS  Google Scholar 

  23. Luo, J. et al. Surface rutilization of anatase TiO2 for efficient electron extraction and stable Pmax output of perovskite solar cells. Chem 4, 911–923 (2018).

    Article  CAS  Google Scholar 

  24. Geng, W. et al. Structures and electronic properties of different CH3NH3PbI3/TiO2 interface: a first-principles study. Sci. Rep. 6, 20131 (2016).

    Article  CAS  Google Scholar 

  25. Du, B. et al. Crystal face dependent charge carrier extraction in TiO2/perovskite heterojunctions. Nano Energy 67, 104227 (2020).

    Article  CAS  Google Scholar 

  26. Maitani, M. M. et al. Effects of energetics with {001} facet-dominant anatase TiO2 scaffold on electron transport in CH3NH3PbI3 perovskite solar cells. Electrochim. Acta 300, 445–454 (2019).

    Article  CAS  Google Scholar 

  27. Biccari, F. et al. Graphene-based electron transport layers in perovskite solar cells: a step-up for an efficient carrier collection. Adv. Energy Mater. 7, 1701349 (2017).

    Article  CAS  Google Scholar 

  28. Noel, N. K. et al. Elucidating the role of a tetrafluoroborate-based ionic liquid at the n-type oxide/perovskite interface. Adv. Energy Mater. 10, 1903231 (2019).

    Article  CAS  Google Scholar 

  29. Xiaobo, C. & Mao, S. S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007).

    Article  CAS  Google Scholar 

  30. Ding, Y. et al. Shape-controlled synthesis of single-crystalline anatase TiO2 micro/nanoarchitectures for efficient dye-sensitized solar cells. Sustain. Energy Fuels 1, 520–528 (2017).

    Article  CAS  Google Scholar 

  31. Gloter, A., Ewels, C., Umek, P., Arcon, D. & Colliex, C. Electronic structure of titania-based nanotubes investigated by EELS spectroscopy. Phys. Rev. B 80, 035413 (2009).

    Article  CAS  Google Scholar 

  32. Mosconi, E., Ronca, E. & De Angelis, F. First-principles investigation of the TiO2/organohalide perovskites interface: the role of interfacial chlorine. J. Phys. Chem. Lett. 5, 2619–2625 (2014).

    Article  CAS  Google Scholar 

  33. Jiang, Q. et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2, 16177 (2016).

    Article  CAS  Google Scholar 

  34. Klasen, A. et al. Removal of surface oxygen vacancies increases conductance through TiO2 thin films for perovskite solar cells. J. Phys. Chem. C 123, 13458–13466 (2019).

    Article  CAS  Google Scholar 

  35. Gratia, P. et al. Intrinsic halide segregation at nanometer scale determines the high efficiency of mixed cation/mixed halide perovskite solar cells. J. Am. Chem. Soc. 138, 15821–15824 (2016).

    Article  CAS  Google Scholar 

  36. Chen, P., Bai, Y. & Wang, L. Minimizing voltage losses in perovskite solar cells. Small Struct. 2, 2000050 (2020).

    Article  CAS  Google Scholar 

  37. Shi, J. et al. Fluorinated low-dimensional Ruddlesden–Popper perovskite solar cells with over 17% power conversion efficiency and improved stability. Adv. Mater. 31, 1901673 (2019).

    Article  CAS  Google Scholar 

  38. Le Corre, V. M., Sherkar, T. S., Koopmans, M. & Koster, L. J. A. Identification of the dominant recombination process for perovskite solar cells based on machine learning. Cell Rep. Phys. Sci. 2, 100346 (2021).

    Article  CAS  Google Scholar 

  39. Pockett, A. & Carnie, M. J. Ionic influences on recombination in perovskite solar cells. ACS Energy Lett. 2, 1683–1689 (2017).

    Article  CAS  Google Scholar 

  40. Park, N.-G. & Zhu, K. Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat. Rev. Mater. 5, 333–350 (2020).

    Article  CAS  Google Scholar 

  41. Tress, W. Perovskite solar cells on the way to their radiative efficiency limit-insights into a success story of high open-circuit voltage and low recombination. Adv. Energy Mater. 7, 1602358 (2017).

    Article  CAS  Google Scholar 

  42. Chen, J. & Park, N.-G. Materials and methods for interface engineering toward stable and efficient perovskite solar cells. ACS Energy Lett. 5, 2742–2786 (2020).

    Article  CAS  Google Scholar 

  43. Yao, J. et al. Quantifying losses in open-circuit voltage in solution-processable solar cells. Phys. Rev. Appl. 4, 014020 (2015).

    Article  CAS  Google Scholar 

  44. Stolterfoht, M. et al. Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nat. Energy 3, 847–854 (2018).

    Article  CAS  Google Scholar 

  45. Min, H. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021).

    Article  CAS  Google Scholar 

  46. Krogmeier, B., Staub, F., Grabowski, D., Rau, U. & Kirchartz, T. Quantitative analysis of the transient photoluminescence of CH3NH3PbI3/PC61BM heterojunctions by numerical simulations. Sustain. Energy Fuels 2, 1027–1034 (2018).

    Article  CAS  Google Scholar 

  47. Gong, X. et al. Highly efficient perovskite solar cells with gradient bilayer electron transport materials. Nano Lett. 18, 3969–3977 (2018).

    Article  CAS  Google Scholar 

  48. Lin, P. Y. et al. Simultaneously enhancing dissociation and suppressing recombination in perovskite solar cells. Nano Energy 36, 95–101 (2017).

    Article  CAS  Google Scholar 

  49. Qiu, L., He, S., Ono, L. K., Liu, S. & Qi, Y. Scalable fabrication of metal halide perovskite solar cells and modules. ACS Energy Lett. 4, 2147–2167 (2019).

    Article  CAS  Google Scholar 

  50. Ding, B. et al. Low-temperature SnO2-modified TiO2 yields record efficiency for normal planar perovskite solar modules. J. Mater. Chem. A 6, 10233–10242 (2018).

    Article  CAS  Google Scholar 

  51. Leijtens, T. et al. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 4, 2885 (2013).

    Article  CAS  Google Scholar 

  52. Boyd, C. C., Cheacharoen, R., Leijtens, T. & McGehee, M. D. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119, 3418–3451 (2019).

    Article  CAS  Google Scholar 

  53. Zhang, F. et al. Complexities of contact potential difference measurements on metal halide perovskite surfaces. J. Phys. Chem. Lett. 10, 890–896 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2018YFB1500101), the 111 Project (no. B16016) and the National Natural Science Foundation of China (no. U1705256 and no. 51961165106). V.D. and P.D. acknowledge the financial support by the Deutsche Forschungsgemeinschaft in the frame of the Priority Program SPP 2196 (project DY 18/14–1). We thank the Swiss National Science Foundation for financial support of the SOLAR4D project (project no. 200020L_1729/1) and Luxembourg Fonds National de la Recherche (‘SUNSPOT’, no. 11244141 and INTER, no. 16/11534230).

Author information

Authors and Affiliations

Authors

Contributions

Y.D. and B.D. conceived and made the experiment. Y.D. synthesized the single-crystalline TiO2 nanoparticles. H.K. performed the XPS, UPS and SEM characterization. O.J.U. conducted the HIM-SIMS characterization with supervision from J.-N.A. T.G. performed the UHV-AFM and KPFM measurement with supervision from A.R. Z.Y. and J.S. simulated the influence of trap state density and electron mobility of TiO2 on the whole photovoltaic performance. Y.L. conducted the UPS, Hall effect measurement and spherical aberration electron microscopy with supervision from G.Y. H.H. performed the steady-state, transient absorption spectroscopy and transient absorption spectroscopy measurement with supervision from W.D. C.L., Y.Y. and X.Z. conducted SCLC and CV measurements. M.A. and P.D. made the time-resolved microwave conductivity measurements. V.S. performed OCVD measurements with supervision from V.D. R.W. performed the TRPL characterization. Y.D. and B.D. wrote the first draft of the manuscript, and all authors contributed feedback and comments. G.Y., J.W. S.D., P.J.D. and M.K.N. directed and supervised the research.

Corresponding authors

Correspondence to Guanjun Yang, Songyuan Dai, Paul J. Dyson or Mohammad Khaja Nazeeruddin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–4, Figs. 1–34, Tables 1–8, experimental details and refs. 1–82.

Reporting Summary

Supplementary Video 1

Water immersion test.

Source data

Source Data Fig. 1

Simulation data.

Source Data Fig. 2

Unprocessed EELS data.

Source Data Fig. 3

Unprocessed JV data, EQE data and so on.

Source Data Fig. 4

Unprocessed time-resolved photoluminescence and transient absorption spectra data.

Source Data Fig. 5

Unprocessed JV and EQE data, and statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Ding, B., Kanda, H. et al. Single-crystalline TiO2 nanoparticles for stable and efficient perovskite modules. Nat. Nanotechnol. 17, 598–605 (2022). https://doi.org/10.1038/s41565-022-01108-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01108-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing