Skip to main content
Log in

Numerical Simulation of the Effect of Annular Boss Structure on DC Arc Anode Attachment

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In recent experiments, it is found that an annular boss anode structure can be used to adjust the arc anode attachment mode, which is expected to be beneficial for improving the anode heat transfer. To understand the effect of annular boss structure on the arc anode attachment, two-dimensional axisymmetric numerical simulation is performed based on a two-temperature chemical non-equilibrium model. The results show that the existence of the annular boss changes the distribution of electric field along the anode surface, and then the arc is attracted to the annular boss because of the enhancement of the nearby electric field intensity. This results in a decrease in the peak current density and a change in its radial distribution in the anode arc attachment region. As a result, the magnitude and direction of the Lorentz force are also changed, acting to suppress the formation of the anode jet. Compared with the case of planar anode, the heat flux of anode with annular boss decreases significantly due to the diffusive arc attachment, which results in significant reduction of the maximum anode temperature. Besides, the effect of the size of annular boss on arc anode attachment behavior has been investigated and the numerical results show that a reasonable choice of inner diameter is important for the formation of diffusion-type anode arc attachment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Murphy AB, Uhrlandt D (2018) Foundations of high-pressure thermal plasmas. Plasma Sources Sci Technol 27(6):063001

    Google Scholar 

  2. Patel AR, Shukla AN (2018) Design & experiments on pen-shaped plasma torch for surface modification. Alex Eng J 57(4):3199–3203

    Google Scholar 

  3. Sanders NA, Pfender E (1984) Measurement of anode falls and anode heat transfer in atmospheric pressure high intensity arcs. J Appl Phys 55(3):714–722

    CAS  Google Scholar 

  4. Chen DM, Pfender E (1980) Modeling of the anode contraction region of high intensity arcs. IEEE Trans Plasma Sci 8(3):252–259

    Google Scholar 

  5. Yang G, Heberlein JVR (2007) Anode attachment modes and their formation in a high intensity argon arc. Plasma Sources Sci Technol 16(3):529–542

    CAS  Google Scholar 

  6. Mentel J, Heberlein JVR (2010) The anode region of low current arcs in high intensity discharge lamps. J Phys D Appl Phys 43(2):023002

    Google Scholar 

  7. Vardelle A, Moreau C, Akedo J et al (2016) The 2016 Thermal Spray Roadmap. Joutnal of Thermal Spray Technology 25(8):1376–1440

    CAS  Google Scholar 

  8. Schein J, Zierhut J, Dzulko M et al (2007) Improved plasma spray torch stability through multi-electrode design. Contrib Plasma Phys 47(7):498–504

    Google Scholar 

  9. Xia WD, Li L, Zhao Y et al (2006) Dynamics of large-scale magnetically rotating arc plasmas. Appl Phys Lett 88(21):211501

    Google Scholar 

  10. Pan WX, Chen LW, Meng X et al (2016) Sufficiently diffused attachment of nitrogen arc by gasdynamic action. Theor Appl Mech Lett 6(6):293–296

    Google Scholar 

  11. Hu YH, Meng X, Huang HJ et al (2021) A novel anode structure for diffuse arc anode attachment. J Phys D Appl Phys. https://doi.org/10.1088/1361-6463/ac0b10

    Article  Google Scholar 

  12. Hsu KC, Etemadi K, Pfender E (1983) Study of the free-burning high-intensity argon arc. J Appl Phys 54(3):1293–1301

    CAS  Google Scholar 

  13. Dinulescu HA, Pfender E (1980) Analysis of the anode boundary layer of high intensity arcs. J Appl Phys 51(6):3149–3157

    Google Scholar 

  14. Heberlein JVR, Mentel J, Pfender E (2009) The anode region of electric arcs: a survey. J Phys D Appl Phys 43(2):023001

    Google Scholar 

  15. Chen DM, Pfender E (1981) Two-temperature modeling of the anode contraction region of high-intensity arcs. IEEE Trans Plasma Sci 9(4):265–274

    Google Scholar 

  16. Niu C, Sun SR, Sun JH et al (2021) Numerical simulation of anode heat transfer of nitrogen arc utilizing two-temperature chemical non-equilibrium model. Chin Phys B 30(9):095206

    CAS  Google Scholar 

  17. Li HP, Benilov MS (2007) Effect of a near-cathode sheath on heat transfer in high-pressure arc plasmas. J Phys D Appl Phys 40(7):2010–2017

    CAS  Google Scholar 

  18. Shkolnik SM (2011) Anode phenomena in arc discharges: a review. Plasma Sources Sci Technol 20(1):013001

    Google Scholar 

  19. Benilov MS, Almeida NA, Baeva M et al (2016) Account of near-cathode sheath in numerical models of high-pressure arc discharges. J Phys D Appl Phys 49(21):215201

    Google Scholar 

  20. Sun JH, Sun SR, Niu C et al (2021) Non-equilibrium modeling on the plasma-electrode interaction in an argon DC plasma torch. J Phys D Appl Phys 54(46):465202

    CAS  Google Scholar 

  21. Baeva M, Kozakov R, Gorchakov S et al (2012) Two-temperature chemically non-equilibrium modelling of transferred arcs. Plasma Sources Sci Technol 21(5):055027

    CAS  Google Scholar 

  22. Raizer YP (1991) Gas discharge physics. Springer, Berlin, Germany

    Google Scholar 

  23. Jonkers J, Sande MVD, Sola A et al (2003) The role of molecular rare gas ions in plasmas operated at atmospheric pressure. Plasma Sources Sci Technol 12(3):464–474

    CAS  Google Scholar 

  24. Cunningham AJ, O’Malley TF, Hobson RM (1981) On the role of vibrational excitation in dissociative recombination. J Phys B: At Mol Opt Phys 14(4):773–782

    CAS  Google Scholar 

  25. Bultel A, Ootegem BV, Bourdon A et al (2002) Influence of Ar2+ in an argon collisional-radiative model. Phys Rev E 65(4):046406

    Google Scholar 

  26. Lymberopoulos DP, Economou DJ (1993) Fluid simulations of glow discharges: effect of metastable atoms in argon. J Appl Phys 73(8):3668–3679

    CAS  Google Scholar 

  27. Kabouzi Y, Graves DB (2007) Modeling of atmospheric-pressure plasma columns sustained by surface waves. Phys Rev E 75(1):016402

    CAS  Google Scholar 

  28. Sun SR, Zhu T, Wang HX et al (2020) Three-dimensional chemical non-equilibrium simulation of an argon transferred arc with cross-flow. J Phys D Appl Phys 53(30):305202

    CAS  Google Scholar 

  29. Niu C, Meng X, Huang HJ et al (2021) Numerical simulation of the effects of protrusion on DC arc anode attachment. Plasma Sci Technol 23(10):104006

    Google Scholar 

  30. Sun SR, Wang HX, Zhu T et al (2019) Chemical non-equilibrium simulation of anode attachment of an argon transferred arc. Plasma Chem Plasma Process 40(1):261–282

    Google Scholar 

  31. Sun SR, Wang HX, Zhu T (2020) Numerical analysis of chemical reaction processes in different anode attachments of a high-intensity argon arc. Contrib Plasma Phys 60(3):e201900094

    CAS  Google Scholar 

  32. Ramshaw JD (1996) Multicomponent diffusion in two-temperature magneto-hydrodynamics. Phys Rev E 53(6):6382–6388

    CAS  Google Scholar 

  33. Ramshaw JD, Chang CH (1991) Ambipolar diffusion in multicomponent plasmas. Plasma Chem Plasma Process 11(3):395–402

    Google Scholar 

  34. Ramshaw JD (1990) Self-consistent effective binary diffusion in multicomponent gas mixtures. J Non-Equilib Thermodyn 15(3):295–300

    CAS  Google Scholar 

  35. Fridman A, Cho YI, Greene GA et al (2007) Transport phenomena in plasma: advances in heat transfer. Academic Press, Elsevier, Waltham, MA, USA

    Google Scholar 

  36. Devoto RS (1973) Transport coefficients of ionized argon. Phys Fluids 16(5):616–623

    CAS  Google Scholar 

  37. Konishi K, Shigeta M, Tanaka M et al (2017) Numerical study on thermal non-equilibrium of arc plasmas in TIG welding processes using a two-temperature model. Welding in the World 61(1):197–207

    CAS  Google Scholar 

  38. Wang HX, Chen SQ, Chen X (2012) Thermodynamic and transport properties of two-temperature lithium plasmas. J Phys D Appl Phys 45(16):165202

    Google Scholar 

  39. Murphy AB, Arundelli CJ (1994) Transport coefficients of argon, nitrogen, oxygen, argon-nitrogen, and argon-oxygen plasmas. Plasma Chem Plasma Process 14(4):451–490

    CAS  Google Scholar 

  40. Aziz RA, Slaman MJ (1990) The repulsive wall of the Ar-Ar interatomic potential reexamined. J Chem Phys 92(2):1030–1035

    CAS  Google Scholar 

  41. Zhang XN, Li HP, Murphy AB et al (2015) Comparison of the transport properties of two-temperature argon plasmas calculated using different methods. Plasma Sources Sci Technol 24(3):035011

    Google Scholar 

  42. Li HP, Chen X (2001) Three-dimensional modelling of a DC non-transferred arc plasma torch. J Phys D Appl Phys 99(17):L99–L102

    Google Scholar 

  43. Hsu KC (1982) A self-consistent model for the high intensity free-burning argon arc. University of Minnesota, Minnesota

    Google Scholar 

  44. Baeva M (2017) Non-equilibrium modeling of tungsten-inert gas arcs. Plasma Chem Plasma Process 37(2):341–370

    CAS  Google Scholar 

  45. Baeva M, Uhrlandt D (2017) Advanced nonequilibrium modelling of dc tungsten-inert gas arcs. Plasma Physics and Technology 4(3):203–212

    Google Scholar 

  46. Baeva M, Benilov MS, Almeida NA et al (2016) Novel non-equilibrium modelling of a DC electric arc in argon. J Phys D Appl Phys 49(24):245205

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11735004, 12005010 and 12175011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Su-Rong Sun or Hai-Xing Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, C., Hu, YH., Shao, K. et al. Numerical Simulation of the Effect of Annular Boss Structure on DC Arc Anode Attachment. Plasma Chem Plasma Process 42, 885–904 (2022). https://doi.org/10.1007/s11090-022-10249-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-022-10249-z

Keywords

Navigation