Skip to main content
Log in

Finite dimension and particle heterogeneous DLAs

  • Regular Article - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We study heterogeneous Diffusion Limited Aggregates (DLAs) i.e. those formed by a mixture, in different proportions, of 4-legged and 2-legged particles. We fixed the total number of particles, let the proportions vary, and computed their finite dimension, a recent addition to the list of “fractal” dimensions. At one extreme, when all particles are 4-legged, the corresponding DLAs are complex, fractal structures whose appearance resembles very much that of the DLAs that occur in Nature. At the other extreme, when almost all particles are 2-legged, the DLAs lose much of their complexity and acquire long rectilinear stretches so that their appearance resembles more and more the structure of the underlying lattice. We expected the complexity in between would decrease monotonically, and this would be reflected in the finite dimension of the corresponding DLAs. However, the finite dimension first increases and then, when the proportion of 4-legged to 2-legged particles is about 30 to 70, starts decreasing. In the paper, we study and explain the mechanisms behind this unexpected, counter-intuitive behaviour.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B.B. Mandelbrot, Fractals: Form, Chance, and Dimension (W.H. Freeman, San Francisco, 1977)

    MATH  Google Scholar 

  2. T.A. Witten, L.M. Sander, Phys. Rev. Lett. 47, 1400–1403 (1981)

    Article  ADS  Google Scholar 

  3. T. Vicsek, Fractal growth phenomena (Singapore: World Scientific, 2nd edition, 1992)

  4. J.A. Shapiro, Ann. Rev. Microbiol. 52(1), 81–104 (1998)

    Article  Google Scholar 

  5. M. Nazzarro, F. Nieto, A.J. Ramirez-Pastor, Surface Sci. 497, 275–284 (2002)

    Article  ADS  Google Scholar 

  6. H. Li, S.H. Park, J.H. Reif, T.H. LaBean, H. Yan, J. Am. Chem. Soc. 126(2), 418–419 (2004)

    Article  Google Scholar 

  7. B.B. Mandelbrot, The fractal geometry of nature (W.H. Freeman, San Francisco, 1982)

    MATH  Google Scholar 

  8. L. Niemeyer, L. Pietronero, H.J. Wiesmann, Phys. Rev. Lett. 52, 1033–1036 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  9. G.M. Whitesides, B. Grzybowski, Science 295(5564), 2418–2421 (2002)

    Article  ADS  Google Scholar 

  10. S. Ghosh, R. Gupta, S. Ghosh, Chinese J. Phys. 56(5), 1810–1815 (2018)

    Article  ADS  Google Scholar 

  11. Y. Wang, S. Liu, H. Li, Fractals 27(08), 1950137 (2019)

    Article  ADS  Google Scholar 

  12. I. Pandey, A. Chandra, Physica Scripta 94(11), 115013 (2019)

    Article  ADS  Google Scholar 

  13. S. Salcedo-Sanz, L. Cuadra, Physica A: Statistical Mech. Appl. 523, 1286–1305 (2019)

    Article  ADS  Google Scholar 

  14. A.V. Mahjan, A.V. Limaye, A.G. Banpurkar, P.M. Gade, Fractals 28(07), 2050137 (2020)

  15. S. Salcedo-Sanz, L. Cuadra, Commun. Nonlinear Sci. Num. Simulation 83, 105092 (2020)

    Article  Google Scholar 

  16. L. Chen, N. Tan, X. Ye, W. Wu, H. Xiong, J. Phys.: Conf. Series 1813(1), 012011 (2021)

    Google Scholar 

  17. X. Guo, J. Wang, J. Molecular Liquid. 324, 114692 (2021)

    Article  Google Scholar 

  18. F. O. Sanchez–Varretti, A. J. Ramirez–Pastor, The European Physical Journal E 44(3) (2021)

  19. L.I. Candia, J. Carbonetti, G.D. Garcia, F.O. Sanchez-Varretti, Int. J. Modern Phys. C 26(12), 1550136 (2015)

    Article  ADS  Google Scholar 

  20. J. M. Alonso, arXiv:1607.08130v1 e-prints (2016)

  21. J. M. Alonso, arXiv:1508.02946 e-prints (2015)

  22. J.M. Alonso, A. Arroyuelo, P. Garay, O. Martin, J. Vila, Sci. Rep. 8, 1 (2018)

    ADS  Google Scholar 

  23. J. M. Alonso, J. Álvarez, C. Vega-Riveros, P. Villagra, Rev. FCA, UNCUYO 51, 142–153 (2019)

  24. J.M. Alonso, F.O. Sanchez-Varretti, M.A. Frechero, Eur. Phys. J. E 44(88), 142–153 (2021)

    Google Scholar 

  25. F. Hausdorff, Math. Annalen 79(999), 157–179 (1918)

    Article  MathSciNet  Google Scholar 

  26. W. Stein, Sage mathematics software (version 7.2). The Sage Development Team, http://www.sagemath.org (2007)

  27. C. Jordan, J. Reine Angew. Math. 70, 185–190 (1869)

    MathSciNet  Google Scholar 

  28. K. Falconer, Fractal Geometry: Mathematical Foundations and its Applications (John Wiley & Sons, Chichester, UK, 1990)

    MATH  Google Scholar 

Download references

Acknowledgements

The second author acknowledges the financial support of Universidad Tecnológica Nacional, Facultad Regional San Rafael, PID UTN 8104 and 5154 TC. F.O.S.V is Research Fellow of the CONICET Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan M. Alonso.

Ethics declarations

Author contribution statement

FOSV developed simulation algorithms, performed the simulation and collected the data; JMA analysed and processed the data and developed the mathematical method. Both authors wrote the text of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonso, J.M., Sanchez–Varretti, F.O. Finite dimension and particle heterogeneous DLAs. Eur. Phys. J. E 45, 36 (2022). https://doi.org/10.1140/epje/s10189-022-00191-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-022-00191-5

Navigation