Skip to main content
Log in

Thermodynamics of multi-horizon spacetimes

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

There exist several well-established procedures for computing thermodynamics for a single horizon spacetime. However, for a spacetime with multi-horizon, the thermodynamics is not very clear. It is not fully understood whether there exists a global temperature for the multi-horizon spacetime or not. Here we show that a global temperature can exist for Schwarzschild-de Sitter spacetime, Reissner-Nordstrom-de Sitter spacetime, and rotating BTZ black hole. This temperature does not coincide with the conventional Hawking temperature related to the outer horizon. We also show that the total entropy for these spacetimes can not be determined only by the outer horizon. The correlations between the horizons of these spacetimes determine it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data availability

This manuscript has no associated data or the data will not be deposited.

References

  1. Hawking, S.W.: Particle creation by black holes. Comm. Math. Phys. 43, 199 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  2. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space, vol. 7. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  3. Parker, L., Toms, D.: Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity, 1st edn. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  4. Jacobson, T.: Introduction to quantum fields in curved space-time and the Hawking effect, in Lectures on quantum gravity. In: Proceedings, School of Quantum Gravity, Valdivia, Chile, January 4-14, 2002. pp. 39–89 (2003), https://doi.org/10.1007/0-387-24992-3_2arXiv:gr-qc/0308048 [gr-qc]

  5. Kiefer, C.: Quantum aspects of black holes. In: DPG School of Physics (Course 2): Galactic Black Hole 2001 Bad Honnef, Germany, August 26-31, 2001 (2002) arXiv:astro-ph/0202032 [astro-ph]

  6. Traschen, J. H.: An Introduction to black hole evaporation, in Mathematical methods in physics. Proceedings, Winter School, Londrina, Brazil, August 17-26, 1999 (1999) arXiv:gr-qc/0010055 [gr-qc]

  7. DeWitt, B.S.: Quantum field theory in curved spacetime. Phys. Rep. 19, 295 (1975). https://doi.org/10.1016/0370-1573(75)90051-4

    Article  ADS  Google Scholar 

  8. Parikh, M.K., Wilczek, F.: Hawking radiation as tunneling. Phys. Rev. Lett. 85, 5042 (2000). https://doi.org/10.1103/PhysRevLett.85.5042. arXiv:hep-th/9907001 [hep-th]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. Davies, P.C.W.: Scalar particle production in Schwarzschild and Rindler metrics. J. Phys. A 8, 609 (1975). https://doi.org/10.1088/0305-4470/8/4/022

    Article  ADS  Google Scholar 

  10. Wald, R.M.: On particle creation by black holes. Commun. Math. Phys. 45, 9 (1975). https://doi.org/10.1007/BF01609863

    Article  MathSciNet  ADS  Google Scholar 

  11. Padmanabhan, T.: Thermodynamical aspects of gravity: new insights. Rep. Prog. Phys. 73, 046901 (2010). https://doi.org/10.1088/0034-4885/73/4/046901. arXiv:0911.5004 [gr-qc]

    Article  ADS  Google Scholar 

  12. Volovik, G. E.: Effect of the inner horizon on the black hole thermodynamics: reissner-Nordström black hole and Kerr black hole, (2021a), arXiv:2107.11193 [gr-qc]

  13. Volovik, G. E.: Macroscopic quantum tunneling: from quantum vortices to black holes and Universe, (2021b), arXiv:2108.00419 [gr-qc]

  14. Choudhury, T.R., Padmanabhan, T.: Concept of temperature in multi-horizon spacetimes: analysis of Schwarzschild-de Sitter metric. Gen. Relativ. Gravit. 39, 1789 (2007). https://doi.org/10.1007/s10714-007-0489-0. arXiv:gr-qc/0404091

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. Chabab, M., El Moumni, H., Khalloufi, J.: On Einstein-non linear-Maxwell-Yukawa de-Sitter black hole thermodynamics. Nucl. Phys. B 963, 115305 (2021). https://doi.org/10.1016/j.nuclphysb.2021.115305. arXiv:2001.01134 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  16. Shankaranarayanan, S.: Temperature and entropy of Schwarzschild-de Sitter space-time. Phys. Rev. D 67, 084026 (2003). https://doi.org/10.1103/PhysRevD.67.084026. arXiv:gr-qc/0301090

    Article  MathSciNet  ADS  Google Scholar 

  17. Srinivasan, K., Padmanabhan, T.: Particle production and complex path analysis. Phys. Rev. D 60, 024007 (1999). https://doi.org/10.1103/PhysRevD.60.024007. arXiv:gr-qc/9812028

    Article  MathSciNet  ADS  Google Scholar 

  18. Volovik, G.E.: Simulation of Painleve-Gullstrand black hole in thin He-3 - A film. JETP Lett. 69, 705 (1999). https://doi.org/10.1134/1.568079. arXiv:gr-qc/9901077

    Article  ADS  Google Scholar 

  19. Akhmedov, E.T., Akhmedova, V., Singleton, D.: Hawking temperature in the tunneling picture. Phys. Lett. B 642, 124 (2006). arXiv:hep-th/0608098

    Article  MathSciNet  ADS  Google Scholar 

  20. Vanzo, L., Acquaviva, G., Di Criscienzo, R.: Tunnelling Methods and Hawking’s radiation: achievements and prospects. Class. Quant. Grav. 28, 183001 (2011). https://doi.org/10.1088/0264-9381/28/18/183001. arXiv:1106.4153 [gr-qc]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. Jannes, G.: Hawking radiation of E \(<\) m massive particles in the tunneling formalism. JETP Lett. 94, 18 (2011). https://doi.org/10.1134/S0021364011130091. arXiv:1105.1656 [gr-qc]

    Article  Google Scholar 

  22. Bhattacharya, S., Lahiri, A.: Mass function and particle creation in Schwarzschild-de Sitter spacetime. Eur. Phys. J. C 73, 2673 (2013). https://doi.org/10.1140/epjc/s10052-013-2673-6. arXiv:1301.4532 [gr-qc]

    Article  ADS  Google Scholar 

  23. Medved, A.J.M.: Radiation via tunneling from a de sitter cosmological horizon. Phys. Rev. D 66, 124009 (2002). https://doi.org/10.1103/PhysRevD.66.124009

    Article  MathSciNet  ADS  Google Scholar 

  24. Pappas, T., Kanti, P.: Schwarzschild-de Sitter spacetime: the role of temperature in the emission of Hawking radiation. Phys. Lett. B 775, 140 (2017). https://doi.org/10.1016/j.physletb.2017.10.058. arXiv:1707.04900 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  25. Robson, C. W., Villari, L. D. M., Biancalana, F.: Global hawking temperature of Schwarzschild-de sitter spacetime: a topological approach, (2019). arXiv:1902.02547 [gr-qc]

  26. Tian, J.-X., Gui, Y.-X., Guo, G.-H., Lv, Y., Zhang, S.-H., Wang, W.: The Real scalar field in Schwarzschild-de Sitter space-time. Gen. Relativ. Gravit. 35, 1473 (2003). https://doi.org/10.1023/A:1024590819913. arXiv:gr-qc/0304009

    Article  MATH  ADS  Google Scholar 

  27. Bousso, R., Hawking, S.W.: (anti-)evaporation of schwarzschild-de sitter black holes. Phys. Rev. D 57, 2436 (1998). https://doi.org/10.1103/PhysRevD.57.2436

    Article  MathSciNet  ADS  Google Scholar 

  28. Li, X.-P., Ma, Y.-B., Zhang, Y., Zhang, L.-C., Li, H.-F.: Thermodynamics of phase transition in Reissner-Nordstrom-de sitter spacetime, (2021). arXiv:2104.02264 [gr-qc]

  29. Zhang, L.-C., Zhao, R., Ma, M.-S.: Entropy of Reissner-Nordström-de Sitter black hole. Phys. Lett. B 761, 74 (2016). https://doi.org/10.1016/j.physletb.2016.08.013. arXiv:1610.09886 [gr-qc]

    Article  MATH  ADS  Google Scholar 

  30. Hollands, S., Wald, R.M., Zahn, J.: Quantum instability of the Cauchy horizon in Reissner-Nordström-deSitter spacetime. Class. Quant. Grav. 37, 115009 (2020). https://doi.org/10.1088/1361-6382/ab8052. arXiv:1912.06047 [gr-qc]

    Article  MATH  ADS  Google Scholar 

  31. Guo, G.-H., Gui, Y.-X., Tian, J.-X.: The real scalar field in extreme RNdS space. Gen. Relativ. Gravit. 37, 1323 (2005). https://doi.org/10.1007/s10714-005-0115-y

    Article  MathSciNet  MATH  ADS  Google Scholar 

  32. Ahmed, J., Saifullah, K.: Greybody factor of a scalar field from Reissner-Nordström-de Sitter black hole. Eur. Phys. J. C 78, 316 (2018). https://doi.org/10.1140/epjc/s10052-018-5800-6. arXiv:1610.06104 [gr-qc]

    Article  ADS  Google Scholar 

  33. Banados, M., Teitelboim, C., Zanelli, J.: The Black hole in three-dimensional space-time. Phys. Rev. Lett. 69, 1849 (1992). https://doi.org/10.1103/PhysRevLett.69.1849. arXiv:hep-th/9204099

    Article  MathSciNet  MATH  ADS  Google Scholar 

  34. Banados, M., Henneaux, M., Teitelboim, C., Zanelli, J.: Geometry of the (2+1) black hole. Phys. Rev. D 48, 1506 (1993). https://doi.org/10.1103/PhysRevD.48.1506 [Erratum: Phys. Rev. D 88, 069902 (2013)]. arXiv:gr-qc/9302012

  35. Dias, O.J.C., Reall, H.S., Santos, J.E.: The BTZ black hole violates strong cosmic censorship. JHEP 12, 097 (2019). https://doi.org/10.1007/JHEP12(2019)097. arXiv:1906.08265 [hep-th]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. Chaturvedi, P., Sengupta, G.: Rotating BTZ black holes and one dimensional holographic superconductors. Phys. Rev. D 90, 046002 (2014). https://doi.org/10.1103/PhysRevD.90.046002. arXiv:1310.5128 [hep-th]

    Article  ADS  Google Scholar 

  37. Kajuri, N.: Bulk reconstruction in rotating BTZ black hole. Phys. Rev. D 103, 066019 (2021). https://doi.org/10.1103/PhysRevD.103.066019. arXiv:2012.07151 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  38. Fathi, M., Lepe, S., Villanueva, J.R.: Adiabatic analysis of the rotating BTZ black hole. Eur. Phys. J. C 81, 499 (2021). https://doi.org/10.1140/epjc/s10052-021-09302-6. arXiv:2103.06329 [gr-qc]

    Article  ADS  Google Scholar 

  39. Akcay, S., Matzner, R.A.: Kerr-de sitter universe. Class. Quant. Grav. 28, 085012 (2011). https://doi.org/10.1088/0264-9381/28/8/085012. arXiv:1011.0479 [gr-qc]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  40. Li, H.-F., Ma, M.-S., Zhang, L.-C., Zhao, R.: Entropy of kerr-de sitter black hole. Nucl. Phys. B 920, 211 (2017). https://doi.org/10.1016/j.nuclphysb.2017.04.013

    Article  MathSciNet  MATH  ADS  Google Scholar 

  41. Suzuki, H., Takasugi, E., Umetsu, H.: Perturbations of Kerr-de Sitter black holes and Heun’s equations. Prog. Theor. Phys. 100, 491 (1998). https://doi.org/10.1143/PTP.100.491

    Article  MathSciNet  ADS  Google Scholar 

  42. Franzen, A. T., Girão, P. M.: Double null coordinates for Kerr-Newman-de Sitter spacetimes, (2020), arXiv:2008.13513 [gr-qc]

  43. Gwak, B.: Thermodynamics and cosmic censorship conjecture in Kerr-Newman-de sitter black hole. Entropy 20, 855 (2018). https://doi.org/10.3390/e20110855

    Article  ADS  Google Scholar 

  44. Stuchlík, Z., Bao, G., Østgaard, E., Hledík, S.: Kerr-newman-de sitter black holes with a restricted repulsive barrier of equatorial photon motion. Phys. Rev. D 58, 084003 (1998). https://doi.org/10.1103/PhysRevD.58.084003

    Article  MathSciNet  ADS  Google Scholar 

  45. Hendi, S.H., Panahiyan, S., Mamasani, R.: Thermodynamic stability of charged BTZ black holes: ensemble dependency problem and its solution. Gen. Relativ. Gravit. 47, 91 (2015). https://doi.org/10.1007/s10714-015-1932-2. arXiv:1507.08496 [gr-qc]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  46. Hendi, S.H., Tavakkoli, A.M., Panahiyan, S., Eslam Panah, B., Hackmann, E.: Simulation of geodesic trajectory of charged BTZ black holes in massive gravity. Eur. Phys. J. C 80, 524 (2020). https://doi.org/10.1140/epjc/s10052-020-8065-9. arXiv:2002.01302 [gr-qc]

    Article  ADS  Google Scholar 

  47. Tang, Z.-Y., Zhang, C.-Y., Kord Zangeneh, M., Wang, B., Saavedra, J.: Thermodynamical and dynamical properties of charged BTZ black holes. Eur. Phys. J. C 77, 390 (2017). https://doi.org/10.1140/epjc/s10052-017-4966-7. arXiv:1610.01744 [hep-th]

    Article  ADS  Google Scholar 

  48. Janiszewski, S.: Asymptotically hyperbolic black holes in Horava gravity. JHEP 01, 018 (2015). https://doi.org/10.1007/JHEP01(2015)018. arXiv:1401.1463 [hep-th]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  49. Davison, R.A., Grozdanov, S., Janiszewski, S., Kaminski, M.: Momentum and charge transport in non-relativistic holographic fluids from Hořava gravity. JHEP 11, 170 (2016). https://doi.org/10.1007/JHEP11(2016)170. arXiv:1606.06747 [hep-th]

    Article  MATH  ADS  Google Scholar 

  50. Franzen, A., Gutti, S., Kiefer, C.: Quantum gravitational collapse in the Lemaitre-Tolman-Bondi model with a positive cosmological constant. Class. Quant. Grav. 27, 015011 (2010). https://doi.org/10.1088/0264-9381/27/1/015011. arXiv:0908.3570 [gr-qc]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  51. Kamenshchik, A. Y., Starobinsky, A. A., Vardanyan, T.: Massive scalar field in de Sitter spacetime: a two-loop calculation and a comparison with the stochastic approach (2021), arXiv:2109.05625 [gr-qc]

Download references

Acknowledgements

I thank Sumanta Chakraborty, Habib Ahammad Mondal, and Sudip Mandal for many useful discussions. I also thank the Saha Institute of Nuclear Physics (SINP) Kolkata for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiranjeeb Singha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singha, C. Thermodynamics of multi-horizon spacetimes. Gen Relativ Gravit 54, 38 (2022). https://doi.org/10.1007/s10714-022-02924-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-02924-5

Navigation