Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cellular metabolic adaptations in rheumatoid arthritis and their therapeutic implications

Abstract

Activation of endothelium and immune cells is fundamental to the initiation of autoimmune diseases such as rheumatoid arthritis (RA), and it results in trans-endothelial cell migration and synovial fibroblast proliferation, leading to joint destruction. In RA, the synovial microvasculature is highly dysregulated, resulting in inefficient oxygen perfusion to the synovium, which, along with the high metabolic demands of activated immune and stromal cells, leads to a profoundly hypoxic microenvironment. In inflamed joints, infiltrating immune cells and synovial resident cells have great requirements for energy and nutrients, and they adapt their metabolic profiles to generate sufficient energy to support their highly activated inflammatory states. This shift in metabolic capacity of synovial cells enables them to produce the essential building blocks to support their proliferation, activation and invasiveness. Furthermore, it results in the accumulation of metabolic intermediates and alteration of redox-sensitive pathways, affecting signalling pathways that further potentiate the inflammatory response. Importantly, the inflamed synovium is a multicellular tissue, with cells differing in their metabolic requirements depending on complex cell–cell interactions, nutrient supply, metabolic intermediates and transcriptional regulation. Therefore, understanding the complex interplay between metabolic and inflammatory pathways in synovial cells in RA will provide insight into the underlying mechanisms of disease pathogenesis.

Key points

  • Neoangiogenesis and synovial expansion induce a bioenergetic crisis in the inflamed joint in rheumatoid arthritis (RA).

  • In RA compared with healthy tissue, synovial fibroblasts undergo a metabolic shift associated with increased invasive capacity and disease activity.

  • In RA, synovial stromal–immune cell interactions lead to reciprocal metabolic changes that potentiate the inflammatory response.

  • In RA, myeloid cells display metabolic abnormalities associated with increased inflammatory function.

  • In RA, T cell polarization and cytokine production are linked to metabolic reprogramming, and B cells are resistant to hypoxia-induced inhibition of pro-inflammatory cytokine secretion.

  • Metabolic reprogramming could represent a new therapeutic strategy for patients with RA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the main cellular metabolic pathways.
Fig. 2: Metabolic requirements of endothelial tip, stalk and phalanx cells.
Fig. 3: Metabolic reprogramming of synovial fibroblasts in rheumatoid arthritis.
Fig. 4: Metabolic adaptions of macrophages in rheumatoid arthritis.
Fig. 5: Intrinsic and extrinsic mechanisms of metabolic adaptation and dysfunction of T cells in rheumatoid arthritis.
Fig. 6: Potential mechanisms of B cell metabolic programming in rheumatoid arthritis.
Fig. 7: Metabolic triggers for synovial cell subtypes.

Similar content being viewed by others

References

  1. McInnes, I. B. & Schett, G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet 389, 2328–2337 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Tas, S. W., Maracle, C. X., Balogh, E. & Szekanecz, Z. Targeting of proangiogenic signalling pathways in chronic inflammation. Nat. Rev. Rheumatol. 12, 111–122 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Ouyang, X. et al. Digoxin suppresses pyruvate kinase M2-promoted HIF-1alpha transactivation in steatohepatitis. Cell Metab. 27, 339–350.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Izquierdo, E. et al. Immature blood vessels in rheumatoid synovium are selectively depleted in response to anti-TNF therapy. PLoS One 4, e8131 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Kennedy, A. et al. Angiogenesis and blood vessel stability in inflammatory arthritis. Arthritis Rheum. 62, 711–721 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Fromm, S. et al. Enhanced angiogenic function in response to fibroblasts from psoriatic arthritis synovium compared to rheumatoid arthritis. Arthritis Res. Ther. 21, 297 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sivakumar, B. et al. Synovial hypoxia as a cause of tendon rupture in rheumatoid arthritis. J. Hand Surg. Am. 33, 49–58 (2008).

    Article  PubMed  Google Scholar 

  8. Kennedy, A. et al. Tumor necrosis factor blocking therapy alters joint inflammation and hypoxia. Arthritis Rheum. 63, 923–932 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Henderson, B., Bitensky, L. & Chayen, J. Glycolytic activity in human synovial lining cells in rheumatoid arthritis. Ann. Rheum. Dis. 38, 63–67 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Treuhaft, P. S. & McCarty, D. J. Synovial fluid pH, lactate, oxygen and carbon dioxide partial pressure in various joint diseases. Arthritis Rheum. 14, 475–484 (1971).

    Article  CAS  PubMed  Google Scholar 

  11. Naughton, D. P. et al. A comparative evaluation of the metabolic profiles of normal and inflammatory knee-joint synovial fluids by high resolution proton NMR spectroscopy. FEBS Lett. 332, 221–225 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Troughton, P. R. et al. Synovial fluid interleukin-8 and neutrophil function in rheumatoid arthritis and seronegative polyarthritis. Br. J. Rheumatol. 35, 1244–1251 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Lund-Olesen, K. Oxygen tension in synovial fluids. Arthritis Rheum. 13, 769–776 (1970).

    Article  CAS  PubMed  Google Scholar 

  14. Etherington, P. J., Winlove, P., Taylor, P., Paleolog, E. & Miotla, J. M. VEGF release is associated with reduced oxygen tensions in experimental inflammatory arthritis. Clin. Exp. Rheumatol. 20, 799–805 (2002).

    CAS  PubMed  Google Scholar 

  15. Peters, C. L. et al. The transcription factors hypoxia-inducible factor 1α and Ets-1 colocalize in the hypoxic synovium of inflamed joints in adjuvant-induced arthritis. Arthritis Rheum. 50, 291–296 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Ng, C. T. et al. Synovial tissue hypoxia and inflammation in vivo. Ann. Rheum. Dis. 69, 1389–1395 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Kvacskay, P. et al. Increase of aerobic glycolysis mediated by activated T helper cells drives synovial fibroblasts towards an inflammatory phenotype: new targets for therapy? Arthritis Res. Ther. 23, 56 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ciurtin, C. et al. Correlation between different components of synovial fluid and pathogenesis of rheumatic diseases. Rom. J. Intern. Med. 44, 171–181 (2006).

    PubMed  Google Scholar 

  19. Fujii, W. et al. Monocarboxylate transporter 4, associated with the acidification of synovial fluid, is a novel therapeutic target for inflammatory arthritis. Arthritis Rheumatol. 67, 2888–2896 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Giatromanolaki, A. et al. Upregulated hypoxia inducible factor-1α and -2α pathway in rheumatoid arthritis and osteoarthritis. Arthritis Res. Ther. 5, R193–R201 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kaelin, W. & Ratcliffe, P. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 30, 393–402 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Biniecka, M. et al. Dysregulated bioenergetics: a key regulator of joint inflammation. Ann. Rheum. Dis. 75, 2192–2200 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Guo, X. & Chen, G. Hypoxia-inducible factor is critical for pathogenesis and regulation of immune cell functions in rheumatoid arthritis. Front. Immunol. 11, 1668 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oliver, K. M. et al. Hypoxia activates NF-κB-dependent gene expression through the canonical signaling pathway. Antioxid. Redox Signal. 11, 2057–2064 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Li, C. et al. PI3 kinase/Akt/HIF-1α pathway is associated with hypoxia-induced epithelial-mesenchymal transition in fibroblast-like synoviocytes of rheumatoid arthritis. Mol. Cell. Biochem. 372, 221–231 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Gao, W. et al. Hypoxia and STAT3 signalling interactions regulate pro-inflammatory pathways in rheumatoid arthritis. Ann. Rheum. Dis. 74, 1275–1283 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Fearon, U., Canavan, M., Biniecka, M. & Veale, D. J. Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis. Nat. Rev. Rheumatol. 12, 385–397 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Du, H. et al. Tanshinone IIA suppresses proliferation and inflammatory cytokine production of synovial fibroblasts from rheumatoid arthritis patients induced by TNF-α and attenuates the inflammatory response in AIA mice. Front. Pharmacol. 11, 568 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Qiu, J. et al. Metabolic control of autoimmunity and tissue inflammation in rheumatoid arthritis. Front. Immunol. 12, 652771 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim, S. et al. Global metabolite profiling of synovial fluid for the specific diagnosis of rheumatoid arthritis from other inflammatory arthritis. PLoS One 9, e97501 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Michopoulos, F. et al. Targeted metabolic profiling of the Tg197 mouse model reveals itaconic acid as a marker of rheumatoid arthritis. J. Proteome Res. 15, 4579–4590 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Hanlon, M. M., Canavan, M., Barker, B. E. & Fearon, U. Metabolites as drivers and targets in rheumatoid arthritis. Clin. Exp. Immunol. https://doi.org/10.1093/cei/uxab021 (2021).

    Article  PubMed Central  Google Scholar 

  34. Liang, Y. et al. IL-33 activates mTORC1 and modulates glycolytic metabolism in CD8+ T cells. Immunology 165, 61–73 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Rodriguez, A. E. et al. Serine metabolism supports macrophage IL-1beta production. Cell Metab. 29, 1003–1011.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vigne, S. et al. IL-27-induced type 1 regulatory T-cells produce oxysterols that Constrain IL-10 production. Front. Immunol. 8, 1184 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. McGarry, T. et al. Rheumatoid arthritis CD14+ monocytes display metabolic and inflammatory dysfunction, a phenotype that precedes clinical manifestation of disease. Clin. Transl. Immunol. 10, e1237 (2021).

    Article  CAS  Google Scholar 

  38. Weyand, C. M. & Goronzy, J. J. Immunometabolism in the development of rheumatoid arthritis. Immunol. Rev. 294, 177–187 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Weyand, C. M. & Goronzy, J. J. Immunometabolism in early and late stages of rheumatoid arthritis. Nat. Rev. Rheumatol. 13, 1–11 (2017).

    Article  CAS  Google Scholar 

  40. Pucino, V. et al. Metabolic checkpoints in rheumatoid arthritis. Front. Physiol. 11, 347 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Buchakjian, M. & Kornbluth, S. The engine driving the ship: metabolic steering of cell proliferation and death. Nat. Rev. Mol. Cell Biol. 11, 715–727 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Röhrig, F. & Schulze, A. The multifaceted roles of fatty acid synthesis in cancer. Nat. Rev. Cancer 16, 732–749 (2016).

    Article  PubMed  CAS  Google Scholar 

  43. Harty, L. C. et al. Mitochondrial mutagenesis correlates with the local inflammatory environment in arthritis. Ann. Rheum. Dis. 71, 582–588 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Gallagher, L. et al. Insulin-resistant pathways are associated with disease activity in rheumatoid arthritis and are subject to disease modification through metabolic reprogramming: a potential novel therapeutic approach. Arthritis Rheumatol. 72, 896–902 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Lindy, S., Uitto, J., Turto, H., Rokkanen, P. & Vainio, K. Lactate dehydrogenase in the synovial tissue in rheumatoid arthritis: total activity and isoenzyme composition. Clin. Chim. Acta 31, 19–23 (1971).

    Article  CAS  PubMed  Google Scholar 

  46. Pejovic, M., Stankovic, A. & Mitrovic, D. R. Lactate dehydrogenase activity and its isoenzymes in serum and synovial fluid of patients with rheumatoid arthritis and osteoarthritis. J. Rheumatol. 19, 529–533 (1992).

    CAS  PubMed  Google Scholar 

  47. McGarry, T. et al. Resolution of TLR2-induced inflammation through manipulation of metabolic pathways in rheumatoid arthritis. Sci. Rep. 7, 43165 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bustamante, M. et al. Hexokinase 2 as a novel selective metabolic target for rheumatoid arthritis. Ann. Rheum. Dis. 77, 1636–1643 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Chang, X. & Wei, C. Glycolysis and rheumatoid arthritis. Int. J. Rheum. Dis. 14, 217–222 (2011).

    Article  PubMed  Google Scholar 

  50. Bae, S. et al. α-Enolase expressed on the surfaces of monocytes and macrophages induces robust synovial inflammation in rheumatoid arthritis. J. Immunol. 189, 365–372 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Pucino, V. et al. Lactate buildup at the site of chronic inflammation promotes disease by inducing CD4+ T cell metabolic rewiring. Cell Metab. 30, 1055–1074. e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Modolell, M., Corraliza, I. M., Link, F., Soler, G. & Eichmann, K. Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow-derived macrophages by TH1 and TH2 cytokines. Eur. J. Immunol. 25, 1101–1104 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Schaller, M., Burton, D. R. & Ditzel, H. J. Autoantibodies to GPI in rheumatoid arthritis: linkage between an animal model and human disease. Nat. Immunol. 2, 746–753 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Shi, L. Z. et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208, 1367–1376 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Littlewood-Evans, A. et al. GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis. J. Exp. Med. 213, 1655–1662 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jung, S. et al. Ethyl pyruvate ameliorates inflammatory arthritis in mice. Int. Immunopharmacol. 52, 333–341 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Shen, Y. et al. Metabolic control of the scaffold protein TKS5 in tissue-invasive, proinflammatory T cells. Nat. Immunol. 18, 1025–1034 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fearon, U., Veale, D. J. & Szekanecz, Z. in Firestein and Kelley’s Textbook of Rheumatology 11th edn. (ed. Koretzky, G.) 445–454 (Elsevier, 2020).

  59. Eelen, G. et al. Endothelial cell metabolism. Physiol. Rev. 98, 3–58 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Cruys, B. et al. Glycolytic regulation of cell rearrangement in angiogenesis. Nat. Commun. 7, 12240 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. del Toro, R. et al. Identification and functional analysis of endothelial tip cell-enriched genes. Blood 116, 4025–4033 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Strasser, G. A., Kaminker, J. S. & Tessier-Lavigne, M. Microarray analysis of retinal endothelial tip cells identifies CXCR4 as a mediator of tip cell morphology and branching. Blood 115, 5102–5110 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Goveia, J., Stapor, P. & Carmeliet, P. Principles of targeting endothelial cell metabolism to treat angiogenesis and endothelial cell dysfunction in disease. EMBO Mol. Med. 6, 1105–1120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hanlon, M. M. et al. STAT3 mediates the differential effects of oncostatin M and TNFα on RA synovial fibroblast and endothelial cell function. Front. Immunol. 10, 2056 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Akhavani, M. A. et al. Hypoxia upregulates angiogenesis and synovial cell migration in rheumatoid arthritis. Arthritis Res. Ther. 11, R64 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Gao, W. et al. Notch-1 mediates hypoxia-induced angiogenesis in rheumatoid arthritis. Arthritis Rheum. 64, 2104–2113 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Mor, I., Cheung, E. C. & Vousden, K. H. Control of glycolysis through regulation of PFK1: old friends and recent additions. Cold Spring Harb. Symp. Quant. Biol. 76, 211–216 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Schoors, S. et al. Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. Cell Metab. 19, 37–48 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Wade, S. M. et al. Dysregulated miR-125a promotes angiogenesis through enhanced glycolysis. EBioMedicine 47, 402–413 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lu, Y. et al. Glucose-6-phosphate isomerase (G6PI) mediates hypoxia-induced angiogenesis in rheumatoid arthritis. Sci. Rep. 7, 40274 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li, Y. et al. Succinate induces synovial angiogenesis in rheumatoid arthritis through metabolic remodeling and HIF-1α/VEGF axis. Free Radic. Biol. Med. 126, 1–14 (2018).

    Article  PubMed  CAS  Google Scholar 

  73. Hirosue, S. et al. Steady-state antigen scavenging, cross-presentation, and CD8+ T cell priming: a new role for lymphatic endothelial cells. J. Immunol. 192, 5002–5011 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dimou, P. et al. The human glomerular endothelial cells are potent pro-inflammatory contributors in an in vitro model of lupus nephritis. Sci. Rep. 9, 8348 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Certo, M. et al. Endothelial cell and T-cell crosstalk: targeting metabolism as a therapeutic approach in chronic inflammation. Br. J. Pharmacol. 178, 2041–2059 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Haas, R. et al. Lactate regulates metabolic and proinflammatory circuits in control of T cell migration and effector functions. PLoS Biol. 13, 1002202 (2015).

    Article  CAS  Google Scholar 

  77. Ospelt, C. Synovial fibroblasts in 2017. RMD Open 3, e000471 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lefevre, S. et al. Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat. Med. 15, 1414–1420 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bustamante, M. F., Garcia-Carbonell, R., Whisenant, K. D. & Guma, M. Fibroblast-like synoviocyte metabolism in the pathogenesis of rheumatoid arthritis. Arthritis Res. Ther. 19, 110 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Ahn, J. K. et al. GC/TOF-MS-based metabolomic profiling in cultured fibroblast-like synoviocytes from rheumatoid arthritis. Jt Bone Spine 83, 707–713 (2016).

    Article  CAS  Google Scholar 

  81. Garcia-Carbonell, R. et al. Critical role of glucose metabolism in rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Rheumatol. 68, 1614–1626 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Balogh, E. et al. Oxidative stress impairs energy metabolism in primary cells and synovial tissue of patients with rheumatoid arthritis. Arthritis Res. Ther. 20, 95 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Xu, J. et al. Intervening upregulated SLC7A5 could mitigate inflammatory mediator by mTOR-P70S6K signal in rheumatoid arthritis synoviocytes. Arthritis Res. Ther. 22, 200 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Weng, J., Tu, M., Yang, B. & Wang, Z. Relationship between LAT1 expression and resistance to chemotherapy in pancreatic ductal adenocarcinoma. Cancer Chemother. Pharmacol. 82, 367 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Karonitsch, T. et al. mTOR senses environmental cues to shape the fibroblast-like synoviocyte response to inflammation. Cell Rep. 23, 2157–2167 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ito, M. et al. Selective interference of mTORC1/RAPTOR protects against human disc cellular apoptosis, senescence, and extracellular matrix catabolism with Akt and autophagy induction. Osteoarthritis Cartilage 25, 2134–2146 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Laragione, T. & Gulko, P. S. mTOR regulates the invasive properties of synovial fibroblasts in rheumatoid arthritis. Mol. Med. 16, 352–358 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Friscic, J. et al. The complement system drives local inflammatory tissue priming by metabolic reprogramming of synovial fibroblasts. Immunity 54, 1002–1021.e10 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Guma, M. et al. Choline kinase inhibition in rheumatoid arthritis. Ann. Rheum. Dis. 74, 1399–1407 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Seki, M. et al. Functional analysis of choline transporters in rheumatoid arthritis synovial fibroblasts. Mod. Rheumatol. 27, 995–1003 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Held, G. et al. Differential presentation of tumor antigen-derived epitopes by MHC-class I and antigen-positive tumor cells. Int. J. Cancer 123, 1841–1847 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Petrasca, A. et al. Targeting bioenergetics prevents CD4 T cell-mediated activation of synovial fibroblasts in rheumatoid arthritis. Rheumatology 59, 2816–2828 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. McGarry, T. et al. JAK/STAT blockade alters synovial bioenergetics, mitochondrial function, and proinflammatory mediators in rheumatoid arthritis. Arthritis Rheumatol. 70, 1959–1970 (2018).

    Article  CAS  PubMed  Google Scholar 

  94. Saeki, N. & Imai, Y. Reprogramming of synovial macrophage metabolism by synovial fibroblasts under inflammatory conditions. Cell Commun. Signal. 18, 188 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570, 246–251 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Frank-Bertoncelj, M. et al. Epigenetically-driven anatomical diversity of synovial fibroblasts guides joint-specific fibroblast functions. Nat. Commun. 8, 14852 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kurowska-Stolarska, M. & Alivernini, S. Synovial tissue macrophages: friend or foe? RMD Open 3, e000527 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. O’Neill, L. A. J. A broken krebs cycle in macrophages. Immunity 42, 393–394 (2015).

    Article  PubMed  CAS  Google Scholar 

  100. Rodríguez-Prados, J.-C. et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J. Immunol. 185, 605–614 (2010).

    Article  PubMed  CAS  Google Scholar 

  101. Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lampropoulou, V. et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 24, 158–166 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Freemerman, A. J. et al. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J. Biol. Chem. 289, 7884–7896 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Van den Bossche, J., Baardman, J. & de Winther, M. P. J. Metabolic characterization of polarized M1 and M2 bone marrow-derived macrophages using real-time extracellular flux analysis. J. Vis. Exp. 105, 53424 (2015).

    Google Scholar 

  105. Bresnihan, B. et al. Synovial tissue sublining CD68 expression is a biomarker of therapeutic response in rheumatoid arthritis clinical trials: consistency across centers. J. Rheumatol. 36, 1800–1802 (2009).

    Article  PubMed  Google Scholar 

  106. Hamilton, J. A. et al. Hypoxia enhances the proliferative response of macrophages to CSF-1 and their pro-survival response to TNF. PLoS One 7, e45853 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jha, A. K. et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Michelucci, A. et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl Acad. Sci. USA 110, 7820–7825 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Papathanassiu, A. E. et al. BCAT1 controls metabolic reprogramming in activated human macrophages and is associated with inflammatory diseases. Nat. Commun. 8, 16040 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ruscitti, P. et al. Monocytes from patients with rheumatoid arthritis and type 2 diabetes mellitus display an increased production of interleukin (IL)-1β via the nucleotide-binding domain and leucine-rich repeat containing family pyrin 3(NLRP3)-inflammasome activation: a possible implication for therapeutic decision in these patients. Clin. Exp. Immunol. 182, 35–44 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cramer, T. et al. HIF-1α is essential for myeloid cell-mediated inflammation. Cell 112, 645–657 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yoon, B. R., Oh, Y. J., Kang, S. W. & Lee, L. E. Role of SLC7A5 in metabolic reprogramming of human monocyte/macrophage immune responses. Front. Immunol. 9, 53 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Shirai, T. et al. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J. Exp. Med. 213, 337–354 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Samavati, L. et al. STAT3 tyrosine phosphorylation is critical for interleukin 1 beta and interleukin-6 production in response to lipopolysaccharide and live bacteria. Mol. Immunol. 46, 1867–1877 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Yang, P., Li, Z., Fu, R., Wu, H. & Li, Z. Pyruvate kinase M2 facilitates colon cancer cell migration via the modulation of STAT3 signalling. Cell Signal. 26, 1853–1862 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Yang, P. et al. Pyruvate kinase M2 accelerates pro-inflammatory cytokine secretion and cell proliferation induced by lipopolysaccharide in colorectal cancer. Cell Signal. 27, 1525–1532 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Gao, X., Wang, H., Yang, J. J., Liu, X. & Liu, Z. R. Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol. Cell 45, 598–609 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zeisbrich, M. et al. Hypermetabolic macrophages in rheumatoid arthritis and coronary artery disease due to glycogen synthase kinase 3b inactivation. Ann. Rheum. Dis. 77, 1053–1062 (2018).

    Article  CAS  PubMed  Google Scholar 

  119. Watanabe, R. et al. Glucose metabolism controls disease-specific signatures of macrophage effector functions. JCI Insight 3, e123047 (2018).

    Article  PubMed Central  Google Scholar 

  120. Neele, A. E., Van Den Bossche, J., Hoeksema, M. A. & De Winther, M. P. J. Epigenetic pathways in macrophages emerge as novel targets in atherosclerosis. Eur. J. Pharmacol. 763, 79–89 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Wang, Z., Long, H., Chang, C., Zhao, M. & Lu, Q. Crosstalk between metabolism and epigenetic modifications in autoimmune diseases: a comprehensive overview. Cell. Mol. Life Sci. 75, 3353–3369 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. Van den Bossche, J. & Saraber, D. L. Metabolic regulation of macrophages in tissues. Cell. Immunol. 330, 54–59 (2018).

    Article  PubMed  CAS  Google Scholar 

  123. Covarrubias, A. J. et al. Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation. eLife 5, e11612 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Bottini, N. & Firestein, G. S. Epigenetics in rheumatoid arthritis: a primer for rheumatologists. Curr. Rheumatol. Rep. 15, 372 (2013).

    Article  PubMed  CAS  Google Scholar 

  125. Bottini, N. & Firestein, G. S. Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat. Rev. Rheumatol. 9, 24–33 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Kuo, D. et al. HBEGF+ macrophages in rheumatoid arthritis induce fibroblast invasiveness. Sci. Transl. Med. 11, eaau8587 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 335, 86–90 (2012).

    Article  CAS  Google Scholar 

  129. Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38, 79–91 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Epelman, S. et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40, 91–104 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Baardman, J., Licht, I., De Winther, M. P. J. & Van Den Bossche, J. Metabolic-epigenetic crosstalk in macrophage activation. Epigenomics 7, 1155–1164 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Italiani, P. & Boraschi, D. From monocytes to M 1/M2 macrophages: phenotypical vs. functional differentiation. Front. Immunol. 5, 1–22 (2014).

    Article  CAS  Google Scholar 

  133. Davies, L. C. et al. Peritoneal tissue-resident macrophages are metabolically poised to engage microbes using tissue-niche fuels. Nat. Commun. 8, 1–15 (2017).

    Article  CAS  Google Scholar 

  134. Ziegler-Heitbrock, L. et al. Nomenclature of monocytes and dendritic cells in blood. Blood 116, e74–e80 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Shortman, K. & Liu, Y.-J. Mouse and human dendritic cell subtypes. Nat. Rev. Immunol. 2, 151–161 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Segura, E. et al. Human inflammatory dendritic cells induce Th17 cell differentiation. Immunity 38, 336–348 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Radford, K. J. et al. Phenotypic and transcriptomic analysis of peripheral blood plasmacytoid and conventional dendritic cells in early drug naïve rheumatoid arthritis. Front. Immunol. 9, 755 (2018).

    Article  CAS  Google Scholar 

  138. Canavan, M. et al. Enriched CD141+ DCs in the joint are transcriptionally distinct, activated, and contribute to joint pathogenesis. JCI Insight 3, e95228 (2018).

    Article  PubMed Central  Google Scholar 

  139. Aggarwal, S., Ghilardi, N., Xie, M. H., de Sauvage, F. J. & Gurney, A. L. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 278, 1910–1914 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Krawczyk, C. M. et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 115, 4742–4749 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Everts, B. et al. Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells. Blood 120, 1422–1431 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Everts, B. et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKε supports the anabolic demands of dendritic cell activation. Nat. Immunol. 15, 323–332 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Jantsch, J. et al. Hypoxia and hypoxia-inducible factor-1α modulate lipopolysaccharide-induced dendritic cell activation and function. J. Immunol. 180, 4697–4705 (2008).

    Article  CAS  PubMed  Google Scholar 

  144. Guak, H. et al. Glycolytic metabolism is essential for CCR7 oligomerization and dendritic cell migration. Nat. Commun. 9, 1–12 (2018).

    Article  CAS  Google Scholar 

  145. Pantel, A. et al. Direct type I IFN but not MDA5/TLR3 activation of dendritic cells is required for maturation and metabolic shift to glycolysis after poly IC stimulation. PLoS Biol. 12, e1001759 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Okano, T. et al. 3-bromopyruvate ameliorate autoimmune arthritis by modulating Th17/Treg cell differentiation and suppressing dendritic cell activation. Sci. Rep. 7, 42412 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Canavan, M. et al. Rheumatoid arthritis synovial microenvironment induces metabolic and functional adaptations in dendritic cells. Clin. Exp. Immunol. 202, 226–238 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Millard, A. L. et al. Butyrate affects differentiation, maturation and function of human monocyte-derived dendritic cells and macrophages. Clin. Exp. Immunol. 130, 245–255 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. He, W. et al. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 429, 188–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Rubic, T. et al. Triggering the succinate receptor GPR91 on dendritic cells enhances immunity. Nat. Immunol. 9, 1261–1269 (2008).

    Article  CAS  PubMed  Google Scholar 

  151. Li, L. et al. Dendritic cells tolerized with adenosine A2AR agonist attenuate acute kidney injury. J. Clin. Invest. 122, 3931–3942 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Saraiva, A. L. et al. Succinate receptor deficiency attenuates arthritis by reducing dendritic cell traffic and expansion of Th17 cells in the lymph nodes. FASEB J. 32, 6550–6558 (2018).

    Article  CAS  Google Scholar 

  153. Rivellese, F. et al. Persistence of mast cell-positive synovitis in early rheumatoid arthritis following treatment with conventional synthetic disease modifying anti-rheumatic drugs. Front. Pharmacol. 11, 1051 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Yamin, R. et al. High percentages and activity of synovial fluid NK cells present in patients with advanced stage active Rheumatoid Arthritis. Sci. Rep. 9, 1351 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Phong, B., Avery, L., Menk, A. V., Delgoffe, G. M. & Kane, L. P. Cutting edge: murine mast cells rapidly modulate metabolic pathways essential for distinct effector functions. J. Immunol. 198, 640–644 (2017).

    Article  CAS  PubMed  Google Scholar 

  156. Rauber, S. et al. Resolution of inflammation by interleukin-9-producing type 2 innate lymphoid cells. Nat. Med. 23, 938–944 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Surace, L. et al. Dichotomous metabolic networks govern human ILC2 proliferation and function. Nat. Immunol. 22, 1367–1374 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Huang, N. & Perl, A. Metabolism as a target for modulation in autoimmune diseases. Trends Immunol. 39, 562–576 (2018).

    Article  CAS  PubMed  Google Scholar 

  159. Menk, A. V. et al. Early TCR signaling induces rapid aerobic glycolysis enabling distinct acute T cell effector functions. Cell Rep. 22, 1509–1521 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Yang, K. et al. T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming. Immunity 39, 1043–1056 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Capone, A. & Volpe, E. Transcriptional regulators of T helper 17 cell differentiation in health and autoimmune diseases. Front. Immunol. 11, 348 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Michalek, R. D. et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186, 3299–3303 (2011).

    Article  CAS  PubMed  Google Scholar 

  163. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  164. Shin, B. et al. Mitochondrial oxidative phosphorylation regulates the fate decision between pathogenic Th17 and regulatory T cells. Cell Rep. 30, 1898–1909.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Karmaus, P. W. F. et al. Metabolic heterogeneity underlies reciprocal fates of TH17 cell stemness and plasticity. Nature 565, 101–105 (2019).

    Article  CAS  PubMed  Google Scholar 

  166. Floudas, A. et al. ACPA status correlates with differential immune profile in patients with rheumatoid arthritis. Cells 10, 647 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Basdeo, S. A. et al. Ex-Th17 (nonclassical Th1) cells are functionally distinct from classical Th1 and Th17 cells and are not constrained by regulatory T cells. J. Immunol. 198, 2249–2259 (2017).

    Article  CAS  PubMed  Google Scholar 

  168. Yang, Z., Fujii, H., Mohan, S. V., Goronzy, J. J. & Weyand, C. M. Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells. J. Exp. Med. 210, 2119–2134 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Floudas, A. et al. Loss of balance between protective and pro-inflammatory synovial tissue T-cell polyfunctionality predates clinical onset of rheumatoid arthritis. Ann. Rheum. Dis. 81, 193–205 (2021).

    Article  PubMed  CAS  Google Scholar 

  170. Li, Y. et al. The DNA repair nuclease MRE11A functions as a mitochondrial protector and prevents T cell pyroptosis and tissue inflammation. Cell Metab. 30, 477–492.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Weyand, C. M., Yang, Z. & Goronzy, J. J. T-cell aging in rheumatoid arthritis. Curr. Opin. Rheumatol. 26, 93–100 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Son, H. J. et al. Metformin attenuates experimental autoimmune arthritis through reciprocal regulation of Th17/Treg balance and osteoclastogenesis. Mediators Inflamm. 2014, 973986 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Wu, B. et al. Succinyl-CoA ligase deficiency in pro-inflammatory and tissue-invasive T cells. Cell Metab. 32, 967–980 e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Wu, B. et al. Mitochondrial aspartate regulates TNF biogenesis and autoimmune tissue inflammation. Nat. Immunol. 22, 1551–1562 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Egan, P. J., van Nieuwenhuijze, A., Campbell, I. K. & Wicks, I. P. Promotion of the local differentiation of murine Th17 cells by synovial macrophages during acute inflammatory arthritis. Arthritis Rheum. 58, 3720–3729 (2008).

    Article  CAS  PubMed  Google Scholar 

  176. Nanki, T. et al. Pathogenic role of the CXCL16-CXCR6 pathway in rheumatoid arthritis. Arthritis Rheum. 52, 3004–3014 (2005).

    Article  CAS  PubMed  Google Scholar 

  177. Ohradanova-Repic, A. et al. Extracellular purine metabolism is the switchboard of immunosuppressive macrophages and a novel target to treat diseases with macrophage imbalances. Front. Immunol. 9, 852 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Vuononvirta, J., Marelli-Berg, F. M. & Poobalasingam, T. Metabolic regulation of T lymphocyte motility and migration. Mol. Asp. Med. 77, 100888 (2021).

    Article  CAS  Google Scholar 

  179. Neveu, M. A. et al. Lactate production precedes inflammatory cell recruitment in arthritic ankles: an imaging study. Mol. Imaging Biol. 22, 1324–1332 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Nakaya, M. et al. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40, 692–705 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Xu, Y. et al. Glycolysis determines dichotomous regulation of T cell subsets in hypoxia. J. Clin. Invest. 126, 2678–2688 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Chen, P. M. et al. Kidney tissue hypoxia dictates T cell-mediated injury in murine lupus nephritis. Sci. Transl. Med. 12, eaay1620 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Dang, E. V. et al. Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell 146, 772–784 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Zeng, Q. H. et al. B cells polarize pathogenic inflammatory T helper subsets through ICOSL-dependent glycolysis. Sci. Adv. 6, eabb6296 (2020).

    Article  CAS  PubMed  Google Scholar 

  185. Akkaya, M. et al. Second signals rescue B cells from activation-induced mitochondrial dysfunction and death. Nat. Immunol. 19, 871–884 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Luo, W., Weisel, F. & Shlomchik, M. J. B cell receptor and CD40 signaling are rewired for synergistic induction of the c-Myc transcription factor in germinal center B cells. Immunity 48, 313–326.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kennedy, D. E. et al. Novel specialized cell state and spatial compartments within the germinal center. Nat. Immunol. 21, 660–670 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Choi, S. C. & Morel, L. Immune metabolism regulation of the germinal center response. Exp. Mol. Med. 52, 348–355 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Tsui, C. et al. Protein kinase C-β dictates B cell fate by regulating mitochondrial remodeling, metabolic reprogramming, and heme biosynthesis. Immunity 48, 1144–1159.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Gaudette, B. T., Jones, D. D., Bortnick, A., Argon, Y. & Allman, D. mTORC1 coordinates an immediate unfolded protein response-related transcriptome in activated B cells preceding antibody secretion. Nat. Commun. 11, 723 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Jellusova, J. et al. Gsk3 is a metabolic checkpoint regulator in B cells. Nat. Immunol. 18, 303–312 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Cho, S. H. et al. Germinal centre hypoxia and regulation of antibody qualities by a hypoxia response system. Nature 537, 234–238 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Floudas, A. et al. Pathogenic, glycolytic PD-1+ B cells accumulate in the hypoxic RA joint. JCI Insight 5, e139032 (2020).

    Article  PubMed Central  Google Scholar 

  194. Guo, Y. et al. CD40L-dependent pathway is active at various stages of rheumatoid arthritis disease progression. J. Immunol. 198, 4490–4501 (2017).

    Article  CAS  PubMed  Google Scholar 

  195. Corsiero, E., Nerviani, A., Bombardieri, M. & Pitzalis, C. Ectopic lymphoid structures: powerhouse of autoimmunity. Front. Immunol. 7, 430 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Yanagihara, Y., Shiozawa, K., Takai, M., Kyogoku, M. & Shiozawa, S. Natural killer (NK) T cells are significantly decreased in the peripheral blood of patients with rheumatoid arthritis (RA). Clin. Exp. Immunol. 118, 131–136 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Linsen, L. et al. Peripheral blood but not synovial fluid natural killer T cells are biased towards a Th1-like phenotype in rheumatoid arthritis. Arthritis Res. Ther. 7, R493–R502 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Koppejan, H. et al. Altered composition and phenotype of mucosal-associated invariant T cells in early untreated rheumatoid arthritis. Arthritis Res. Ther. 21, 3 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Zhao, M. et al. Altered thymic differentiation and modulation of arthritis by invariant NKT cells expressing mutant ZAP70. Nat. Commun. 9, 2627 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Kumar, A. et al. Enhanced oxidative phosphorylation in NKT cells is essential for their survival and function. Proc. Natl Acad. Sci. USA 116, 7439–7448 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Certo, M., Tsai, C. H., Pucino, V., Ho, P. C. & Mauro, C. Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat. Rev. Immunol. 21, 151–161 (2021).

    Article  CAS  PubMed  Google Scholar 

  202. Amedei, A. et al. Ex vivo analysis of pancreatic cancer-infiltrating T lymphocytes reveals that ENO-specific Tregs accumulate in tumor tissue and inhibit Th1/Th17 effector cell functions. Cancer Immunol. Immunother. 62, 1249–1260 (2013).

    Article  CAS  PubMed  Google Scholar 

  203. Clementi, E., Brown, G. C., Feelisch, M. & Moncada, S. Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc. Natl Acad. Sci. USA 95, 7631–7636 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Geiger, R. et al. L-Arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167, 829–842.e13 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Niedbala, W., Cai, B. & Liew, F. Y. Role of nitric oxide in the regulation of T cell functions. Ann. Rheum. Dis. 65 (Suppl. 3), iii37–iii40 (2006).

    PubMed  PubMed Central  Google Scholar 

  206. Lu, Y. et al. Glucocorticoid receptor promotes the function of myeloid-derived suppressor cells by suppressing HIF1α-dependent glycolysis. Cell. Mol. Immunol. 15, 618–629 (2018).

    Article  CAS  PubMed  Google Scholar 

  207. Moreno-Aurioles, V. R. & Sobrino, F. Glucocorticoids inhibit fructose 2,6-bisphosphate synthesis in rat thymocytes. Opposite effect of cycloheximide. Biochim. Biophys. Acta 1091, 96–100 (1991).

    Article  CAS  PubMed  Google Scholar 

  208. Swerdlow, S. et al. Apoptosis inhibition by Bcl-2 gives way to autophagy in glucocorticoid-treated lymphocytes. Autophagy 4, 612–620 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Gosselt, H. R. et al. Identification of metabolic biomarkers in relation to methotrexate response in early rheumatoid arthritis. J. Pers. Med. 10, 271 (2020).

    Article  PubMed Central  Google Scholar 

  210. Falconer, J. et al. Spontaneously resolving joint inflammation is characterised by metabolic agility of fibroblast-like synoviocytes. Front. Immunol. 12, 725641 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Angiari, S. et al. Pharmacological activation of pyruvate kinase M2 inhibits CD4+ T cell pathogenicity and suppresses autoimmunity. Cell Metab. 31, 391–405.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Damasceno, L. E. A. et al. PKM2 promotes Th17 cell differentiation and autoimmune inflammation by fine-tuning STAT3 activation. J. Exp. Med. 217, e20190613 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Xu, J. et al. Upregulated PKM2 in macrophages exacerbates experimental arthritis via STAT1 signaling. J. Immunol. 205, 181–192 (2020).

    Article  CAS  PubMed  Google Scholar 

  214. Yang, X. et al. Pyruvate kinase M2 modulates the glycolysis of chondrocyte and extracellular matrix in osteoarthritis. DNA Cell Biol. 37, 271–277 (2018).

    Article  CAS  PubMed  Google Scholar 

  215. Takahashi, S. et al. Glutaminase 1 plays a key role in the cell growth of fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Res. Ther. 19, 1–10 (2017).

    Article  CAS  Google Scholar 

  216. Li, H. M. et al. Inhibition of glycolysis by targeting lactate dehydrogenase A facilitates hyaluronan synthase 2 synthesis in synovial fibroblasts of temporomandibular joint osteoarthritis. Bone 141, 115584 (2020).

    Article  CAS  PubMed  Google Scholar 

  217. Angelin, A. et al. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 25, 1282–1293. e7 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Szczuka, I., Gamian, A. & Terlecki, G. 3-Bromopyruvate as a potential pharmaceutical in the light of experimental data. Postepy Hig. Med. Dosw. 71, 988–996 (2017).

    Article  Google Scholar 

  219. Zou, Y. et al. Inhibition of 6-phosphofructo-2-kinase suppresses fibroblast-like synoviocytes-mediated synovial inflammation and joint destruction in rheumatoid arthritis. Br. J. Pharmacol. 174, 893–908 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Song, G. et al. Inhibition of hexokinases holds potential as treatment strategy for rheumatoid arthritis. Arthritis Res. Ther. 21, 87 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Veras, F. P. et al. Fructose 1,6-bisphosphate, a high-energy intermediate of glycolysis, attenuates experimental arthritis by activating anti-inflammatory adenosinergic pathway. Sci. Rep. 5, 15171 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Yan, H., Zhou, H. F., Hu, Y. & Pham, C. T. Suppression of experimental arthritis through AMP-activated protein kinase activation and autophagy modulation. J. Rheum. Dis. Treat. 1, 5 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Abdallah, M. S. et al. The AMPK modulator metformin as adjunct to methotrexate in patients with rheumatoid arthritis: a proof-of-concept, randomized, double-blind, placebo-controlled trial. Int. Immunopharmacol. 95, 107575 (2021).

    Article  CAS  PubMed  Google Scholar 

  224. Kim, E. K. et al. Metformin rescues rapamycin-induced mitochondrial dysfunction and attenuates rheumatoid arthritis with metabolic syndrome. Arthritis Res. Ther. 22, 77 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Chang, H. H. et al. A molecular signature of preclinical rheumatoid arthritis triggered by dysregulated PTPN22. JCI Insight 1, e90045 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Dong, X. et al. ACPAs promote IL-1beta production in rheumatoid arthritis by activating the NLRP3 inflammasome. Cell Mol. Immunol. 17, 261–271 (2020).

    Article  CAS  PubMed  Google Scholar 

  227. Yang, Z. et al. Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis. Sci. Transl. Med. 8, 331ra338 (2016).

    Article  Google Scholar 

  228. Rooney, C. M., Mankia, K. & Emery, P. The role of the microbiome in driving RA-related autoimmunity. Front. Cell Dev. Biol. 8, 538130 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Courbon, G. et al. Porphyromonas gingivalis experimentally induces periodontis and an anti-CCP2-associated arthritis in the rat. Ann. Rheum. Dis. 78, 594–599 (2019).

    Article  CAS  PubMed  Google Scholar 

  230. Konig, M. F. et al. Aggregatibacter actinomycetemcomitans-induced hypercitrullination links periodontal infection to autoimmunity in rheumatoid arthritis. Sci. Transl. Med. 8, 369ra176 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Maurice, M. M. et al. Expression of the thioredoxin-thioredoxin reductase system in the inflamed joints of patients with rheumatoid arthritis. Arthritis Rheum. 42, 2430–2439 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Ursula Fearon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks C. Mauro (who co-reviewed with M. Certo), M. Guma and G. Tsokos for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fearon, U., Hanlon, M.M., Floudas, A. et al. Cellular metabolic adaptations in rheumatoid arthritis and their therapeutic implications. Nat Rev Rheumatol 18, 398–414 (2022). https://doi.org/10.1038/s41584-022-00771-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-022-00771-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing