Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of mucosal healing: treating inflammatory bowel disease without immunosuppression?

Abstract

Almost all currently available treatments for inflammatory bowel disease (IBD) act by inhibiting inflammation, often blocking specific inflammatory molecules. However, given the infectious and neoplastic disease burden associated with chronic immunosuppressive therapy, the goal of attaining mucosal healing without immunosuppression is attractive. The absence of treatments that directly promote mucosal healing and regeneration in IBD could be linked to the lack of understanding of the underlying pathways. The range of potential strategies to achieve mucosal healing is diverse. However, the targeting of regenerative mechanisms has not yet been achieved for IBD. Stem cells provide hope as a regenerative treatment and are used in limited clinical situations. Growth factors are available for the treatment of short bowel syndrome but have not yet been applied in IBD. The therapeutic application of organoid culture and stem cell therapy to generate new intestinal tissue could provide a novel mechanism to restore barrier function in IBD. Furthermore, blocking key effectors of barrier dysfunction (such as MLCK or damage-associated molecular pattern molecules) has shown promise in experimental IBD. Here, we review the diversity of molecular targets available to directly promote mucosal healing, experimental models to identify new potential pathways and some of the anticipated potential therapies for IBD.

Key points

  • Inflammatory bowel disease (IBD) has emerged as a global disease with no available cure.

  • Most drugs to treat IBD are immunosuppressive, leading to increased risk of infections and cancer.

  • Inter-individual variation in response to drugs means a wider range of therapeutic strategies is needed.

  • Promoting mucosal healing is a promising therapeutic strategy in IBD.

  • Experimental models have been instrumental to identify novel mechanisms promoting mucosal healing.

  • Drugs promoting regeneration have been identified, but the examination of tumorigenesis in this setting is urgently needed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The stem cell niche in the small intestine and colon.
Fig. 2: The intestinal barrier.
Fig. 3: Experimental models to study mucosal healing.
Fig. 4: Novel and potential future therapies targeting mucosal healing.

Similar content being viewed by others

References

  1. Solberg, I. C. et al. Clinical course during the first 10 years of ulcerative colitis: results from a population-based inception cohort (IBSEN Study). Scand. J. Gastroenterol. 44, 431–440 (2009).

    Article  PubMed  Google Scholar 

  2. Solberg, I. C. et al. Clinical course in Crohn’s disease: results of a Norwegian population-based ten-year follow-up study. Clin. Gastroenterol. Hepatol. 5, 1430–1438 (2007).

    Article  PubMed  Google Scholar 

  3. Eberhardson, M. et al. Tumour necrosis factor inhibitors in Crohn’s disease and the effect on surgery rates. Colorectal Dis. https://doi.org/10.1111/codi.16021 (2021).

    Article  Google Scholar 

  4. Atia, O. et al. Colectomy rates did not decrease in paediatric- and adult-onset ulcerative colitis during the biologics era: a nationwide study from the epi-IIRN. J. Crohns Colitis https://doi.org/10.1093/ecco-jcc/jjab210 (2021).

    Article  Google Scholar 

  5. Bemelman, W. A. et al. ECCO-ESCP Consensus on Surgery for Crohn’s Disease. J. Crohns Colitis 12, 1–16 (2018).

    PubMed  Google Scholar 

  6. Oresland, T. et al. European evidence based consensus on surgery for ulcerative colitis. J. Crohns Colitis 9, 4–25 (2015).

    Article  PubMed  Google Scholar 

  7. de Souza, H. S. P., Fiocchi, C. & Iliopoulos, D. The IBD interactome: an integrated view of aetiology, pathogenesis and therapy. Nat. Rev. Gastroenterol. Hepatol. 14, 739–749 (2017).

    Article  PubMed  Google Scholar 

  8. McGovern, D. P., Kugathasan, S. & Cho, J. H. Genetics of inflammatory bowel diseases. Gastroenterology 149, 1163–1176.e2 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Rieder, F. et al. Results of the 2nd scientific workshop of the ECCO (III): basic mechanisms of intestinal healing. J. Crohns Colitis 6, 373–385 (2012).

    Article  PubMed  Google Scholar 

  10. Kaur, A. & Goggolidou, P. Ulcerative colitis: understanding its cellular pathology could provide insights into novel therapies. J. Inflamm. 17, 15 (2020).

    Article  Google Scholar 

  11. Torres, J. et al. ECCO guidelines on therapeutics in Crohn’s disease: medical treatment. J. Crohns Colitis 14, 4–22 (2020).

    Article  PubMed  Google Scholar 

  12. Raine, T. et al. ECCO guidelines on therapeutics in ulcerative colitis: medical treatment. J. Crohns Colitis 16, 2–17 (2021).

    Article  Google Scholar 

  13. Dvorak, H. F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650–1659 (1986).

    Article  CAS  PubMed  Google Scholar 

  14. Neurath, M. F. & Travis, S. P. Mucosal healing in inflammatory bowel diseases: a systematic review. Gut 61, 1619–1635 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Karin, M. & Clevers, H. Reparative inflammation takes charge of tissue regeneration. Nature 529, 307–315 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Florholmen, J. Mucosal healing in the era of biologic agents in treatment of inflammatory bowel disease. Scand. J. Gastroenterol. 50, 43–52 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Pineton de Chambrun, G., Blanc, P. & Peyrin-Biroulet, L. Current evidence supporting mucosal healing and deep remission as important treatment goals for inflammatory bowel disease. Expert Rev. Gastroenterol. Hepatol. 10, 915–927 (2016).

    CAS  PubMed  Google Scholar 

  18. Mazzuoli, S. et al. Definition and evaluation of mucosal healing in clinical practice. Dig. Liver Dis. 45, 969–977 (2013).

    Article  PubMed  Google Scholar 

  19. Peyrin-Biroulet, L. et al. Selecting Therapeutic Targets in Inflammatory Bowel Disease (STRIDE): determining therapeutic goals for treat-to-target. Am. J. Gastroenterol. 110, 1324–1338 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Turner, D. et al. STRIDE-II: an update on the Selecting Therapeutic Targets in Inflammatory Bowel Disease (STRIDE) Initiative of the International Organization for the Study of IBD (IOIBD): determining therapeutic goals for treat-to-target strategies in IBD. Gastroenterology 160, 1570–1583 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Novak, G. et al. Histologic scoring indices for evaluation of disease activity in Crohn’s disease. Cochrane Database Syst. Rev. 7, CD012351 (2017).

    PubMed  Google Scholar 

  22. Mosli, M. H. et al. Histologic scoring indices for evaluation of disease activity in ulcerative colitis. Cochrane Database Syst. Rev. 5, CD011256 (2017).

    PubMed  Google Scholar 

  23. Park, S., Abdi, T., Gentry, M. & Laine, L. Histological disease activity as a predictor of clinical relapse among patients with ulcerative colitis: systematic review and meta-analysis. Am. J. Gastroenterol. 111, 1692–1701 (2016).

    Article  PubMed  Google Scholar 

  24. Fernandes, S. R. et al. Transmural healing is associated with improved long-term outcomes of patients with Crohn’s disease. Inflamm. Bowel Dis. 23, 1403–1409 (2017).

    Article  PubMed  Google Scholar 

  25. Colombel, J. F., D’Haens, G., Lee, W. J., Petersson, J. & Panaccione, R. Outcomes and strategies to support a treat-to-target approach in inflammatory bowel disease: a systematic review. J. Crohns Colitis 14, 254–266 (2020).

    Article  PubMed  Google Scholar 

  26. Froslie, K. F., Jahnsen, J., Moum, B. A., Vatn, M. H. & IBSEN Group. Mucosal healing in inflammatory bowel disease: results from a Norwegian population-based cohort. Gastroenterology 133, 412–422 (2007).

    Article  PubMed  Google Scholar 

  27. Baert, F. et al. Mucosal healing predicts sustained clinical remission in patients with early-stage Crohn’s disease. Gastroenterology 138, 463–468 (2010).

    Article  PubMed  Google Scholar 

  28. Shah, S. C., Colombel, J. F., Sands, B. E. & Narula, N. Systematic review with meta-analysis: mucosal healing is associated with improved long-term outcomes in Crohn’s disease. Aliment. Pharmacol. Ther. 43, 317–333 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Ben-Horin, S. et al. Assessment of small bowel mucosal healing by video capsule endoscopy for the prediction of short-term and long-term risk of Crohn’s disease flare: a prospective cohort study. Lancet Gastroenterol. Hepatol. 4, 519–528 (2019).

    Article  PubMed  Google Scholar 

  30. Johnson, C. M. & Dassopoulos, T. Update on the use of thiopurines and methotrexate in inflammatory bowel disease. Curr. Gastroenterol. Rep. 20, 53 (2018).

    Article  PubMed  Google Scholar 

  31. Stallmach, A., Hagel, S. & Bruns, T. Adverse effects of biologics used for treating IBD. Best. Pract. Res. Clin. Gastroenterol. 24, 167–182 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Dahmus, J., Rosario, M. & Clarke, K. Risk of lymphoma associated with anti-TNF therapy in patients with inflammatory bowel disease: implications for therapy. Clin. Exp. Gastroenterol. 13, 339–350 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Scharl, S. et al. Malignancies in inflammatory bowel disease: frequency, incidence and risk factors-results from the Swiss IBD Cohort Study. Am. J. Gastroenterol. 114, 116–126 (2019).

    Article  PubMed  CAS  Google Scholar 

  34. Singh, S., Facciorusso, A., Dulai, P. S., Jairath, V. & Sandborn, W. J. Comparative risk of serious infections with biologic and/or immunosuppressive therapy in patients with inflammatory bowel diseases: a systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 18, 69–81.e3 (2020).

    Article  PubMed  Google Scholar 

  35. Oudhoff, M. J. et al. SETD7 controls intestinal regeneration and tumorigenesis by regulating Wnt/beta-Catenin and Hippo/YAP signaling. Dev. Cell 37, 47–57 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Huber, S. et al.IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature 491, 259–263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lindemans, C. A. et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature 528, 560–564 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Atreya, R. & Neurath, M. F. Current and future targets for mucosal healing in inflammatory bowel disease. Visc. Med. 33, 82–88 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Irving, P. M., de Lusignan, S., Tang, D., Nijher, M. & Barrett, K. Risk of common infections in people with inflammatory bowel disease in primary care: a population-based cohort study. BMJ Open Gastroenterol. 8, e000573 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kirchgesner, J. et al. Risk of serious and opportunistic infections associated with treatment of inflammatory bowel diseases. Gastroenterology 155, 337–346.e10 (2018).

    Article  PubMed  Google Scholar 

  41. Poullenot, F. et al. Risk of incident cancer in inflammatory bowel disease patients starting anti-TNF therapy while having recent malignancy. Inflamm. Bowel Dis. 22, 1362–1369 (2016).

    Article  PubMed  Google Scholar 

  42. Muller, M., D’Amico, F., Bonovas, S., Danese, S. & Peyrin-Biroulet, L. TNF inhibitors and risk of malignancy in patients with inflammatory bowel diseases: a systematic review. J. Crohns Colitis 15, 840–859 (2021).

    Article  PubMed  Google Scholar 

  43. Velayos, F. S., Terdiman, J. P. & Walsh, J. M. Effect of 5-aminosalicylate use on colorectal cancer and dysplasia risk: a systematic review and metaanalysis of observational studies. Am. J. Gastroenterol. 100, 1345–1353 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. O’Connor, A., Packey, C. D., Akbari, M. & Moss, A. C. Mesalamine, but not sulfasalazine, reduces the risk of colorectal neoplasia in patients with inflammatory bowel disease: an agent-specific systematic review and meta-analysis. Inflamm. Bowel Dis. 21, 2562–2569 (2015).

    Article  PubMed  Google Scholar 

  45. Zhao, L. N. et al. 5-Aminosalicylates reduce the risk of colorectal neoplasia in patients with ulcerative colitis: an updated meta-analysis. PLoS ONE 9, e94208 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Nguyen, G. C., Gulamhusein, A. & Bernstein, C. N. 5-Aminosalicylic acid is not protective against colorectal cancer in inflammatory bowel disease: a meta-analysis of non-referral populations. Am. J. Gastroenterol. 107, 1298–1304 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Hooper, K. M., Barlow, P. G., Stevens, C. & Henderson, P. Inflammatory bowel disease drugs: a focus on autophagy. J. Crohns Colitis 11, 118–127 (2017).

    Article  PubMed  Google Scholar 

  48. Levin, A. D., Wildenberg, M. E. & van den Brink, G. R. Mechanism of action of anti-TNF therapy in inflammatory bowel disease. J. Crohns Colitis 10, 989–997 (2016).

    Article  PubMed  Google Scholar 

  49. Sigall-Boneh, R. et al. Research gaps in diet and nutrition in inflammatory bowel disease. a topical review by D-ECCO Working Group [Dietitians of ECCO]. J. Crohns Colitis 11, 1407–1419 (2017).

    Article  PubMed  Google Scholar 

  50. Lan, A. et al. Mucosal healing in inflammatory bowel diseases: is there a place for nutritional supplementation? Inflamm. Bowel Dis. 21, 198–207 (2015).

    Article  PubMed  Google Scholar 

  51. Fox, C. J., Hammerman, P. S. & Thompson, C. B. Fuel feeds function: energy metabolism and the T-cell response. Nat. Rev. Immunol. 5, 844–852 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Lee, J. M. & Lee, K. M. Endoscopic diagnosis and differentiation of inflammatory bowel disease. Clin. Endosc. 49, 370–375 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Atreya, R. & Siegmund, B. Location is important: differentiation between ileal and colonic Crohn’s disease. Nat. Rev. Gastroenterol. Hepatol. 18, 544–558 (2021).

    Article  PubMed  Google Scholar 

  54. Neurath, M. F. Targeting immune cell circuits and trafficking in inflammatory bowel disease. Nat. Immunol. 20, 970–979 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Odenwald, M. A. & Turner, J. R. The intestinal epithelial barrier: a therapeutic target? Nat. Rev. Gastroenterol. Hepatol. 14, 9–21 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Peterson, L. W. & Artis, D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 14, 141–153 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Allaire, J. M. et al. The intestinal epithelium: central coordinator of mucosal immunity. Trends Immunol. 39, 677–696 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Gehart, H. & Clevers, H. Tales from the crypt: new insights into intestinal stem cells. Nat. Rev. Gastroenterol. Hepatol. 16, 19–34 (2019).

    Article  PubMed  Google Scholar 

  59. Kaiko, G. E. et al. The colonic crypt protects stem cells from microbiota-derived metabolites. Cell 165, 1708–1720 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Haramis, A. P. et al. De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science 303, 1684–1686 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Sasaki, N. et al. Reg4+ deep crypt secretory cells function as epithelial niche for Lgr5+ stem cells in colon. Proc. Natl Acad. Sci. USA 113, E5399–E5407 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gregorieff, A. et al. Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology 129, 626–638 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Magro, F. et al. European consensus on the histopathology of inflammatory bowel disease. J. Crohns Colitis 7, 827–851 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Birchenough, G. M., Johansson, M. E., Gustafsson, J. K., Bergstrom, J. H. & Hansson, G. C. New developments in goblet cell mucus secretion and function. Mucosal Immunol. 8, 712–719 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bevins, C. L. & Salzman, N. H. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat. Rev. Microbiol. 9, 356–368 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Vaishnava, S. et al. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 334, 255–258 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zeissig, S. et al. Altered ENaC expression leads to impaired sodium absorption in the noninflamed intestine in Crohn’s disease. Gastroenterology 134, 1436–1447 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Vivinus-Nebot, M. et al. Functional bowel symptoms in quiescent inflammatory bowel diseases: role of epithelial barrier disruption and low-grade inflammation. Gut 63, 744–752 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Noren, E., Almer, S. & Soderman, J. Genetic variation and expression levels of tight junction genes identifies association between MAGI3 and inflammatory bowel disease. BMC Gastroenterol. 17, 68 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Clevers, H. The intestinal crypt, a prototype stem cell compartment. Cell 154, 274–284 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Boirivant, M. et al. A transient breach in the epithelial barrier leads to regulatory T-cell generation and resistance to experimental colitis. Gastroenterology 135, 1612–1623.e5 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Laukoetter, M. G. et al. JAM-A regulates permeability and inflammation in the intestine in vivo. J. Exp. Med. 204, 3067–3076 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Weber, C. R., Nalle, S. C., Tretiakova, M., Rubin, D. T. & Turner, J. R. Claudin-1 and claudin-2 expression is elevated in inflammatory bowel disease and may contribute to early neoplastic transformation. Lab. Invest. 88, 1110–1120 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ahmad, R. et al. Targeted colonic claudin-2 expression renders resistance to epithelial injury, induces immune suppression, and protects from colitis. Mucosal Immunol. 7, 1340–1353 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ding, L. et al. Inflammation and disruption of the mucosal architecture in claudin-7-deficient mice. Gastroenterology 142, 305–315 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Graham, W. V. et al. Intracellular MLCK1 diversion reverses barrier loss to restore mucosal homeostasis. Nat. Med. 25, 690–700 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lopez-Posadas, R. et al. Rho-A prenylation and signaling link epithelial homeostasis to intestinal inflammation. J. Clin. Invest. 126, 611–626 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  78. McGovern, D. P. et al. Genome-wide association identifies multiple ulcerative colitis susceptibility loci. Nat. Genet. 42, 332–337 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. McGovern, D. P. et al. MAGI2 genetic variation and inflammatory bowel disease. Inflamm. Bowel Dis. 15, 75–83 (2009).

    Article  PubMed  Google Scholar 

  80. Vancamelbeke, M. et al. Genetic and transcriptomic bases of intestinal epithelial barrier dysfunction in inflammatory bowel disease. Inflamm. Bowel Dis. 23, 1718–1729 (2017).

    Article  PubMed  Google Scholar 

  81. Torres, J. et al. Serum biomarkers identify patients who will develop inflammatory bowel diseases up to 5 years before diagnosis. Gastroenterology 159, 96–104 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Gutzeit, C., Magri, G. & Cerutti, A. Intestinal IgA production and its role in host-microbe interaction. Immunol. Rev. 260, 76–85 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Neutra, M. R., Mantis, N. J. & Kraehenbuhl, J. P. Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nat. Immunol. 2, 1004–1009 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Knoop, K. A., McDonald, K. G., McCrate, S., McDole, J. R. & Newberry, R. D. Microbial sensing by goblet cells controls immune surveillance of luminal antigens in the colon. Mucosal Immunol. 8, 198–210 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Mazzini, E., Massimiliano, L., Penna, G. & Rescigno, M. Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1+ macrophages to CD103+ dendritic cells. Immunity 40, 248–261 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Niess, J. H. et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307, 254–258 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2, 361–367 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Fournier, B. M. & Parkos, C. A. The role of neutrophils during intestinal inflammation. Mucosal Immunol. 5, 354–366 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Borregaard, N., Sorensen, O. E. & Theilgaard-Monch, K. Neutrophil granules: a library of innate immunity proteins. Trends Immunol. 28, 340–345 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Molloy, M. J. et al. Intraluminal containment of commensal outgrowth in the gut during infection-induced dysbiosis. Cell Host Microbe 14, 318–328 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cheroutre, H., Lambolez, F. & Mucida, D. The light and dark sides of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 11, 445–456 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cherrier, D. E., Serafini, N., Di & Santo, J. P. Innate lymphoid cell development: a T cell perspective. Immunity 48, 1091–1103 (2018).

    Article  CAS  PubMed  Google Scholar 

  94. Meininger, I. et al. Tissue-specific features of innate lymphoid cells. Trends Immunol. 41, 902–917 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Colonna, M. Innate lymphoid cells: diversity, plasticity, and unique functions in immunity. Immunity 48, 1104–1117 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sorini, C. & Villablanca, E. J. ILC damage, and I’ll repair it. Immunity 54, 1097–1099 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Sturm, A. & Dignass, A. U. Epithelial restitution and wound healing in inflammatory bowel disease. World J. Gastroenterol. 14, 348–353 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Dignass, A. U. & Podolsky, D. K. Cytokine modulation of intestinal epithelial cell restitution: central role of transforming growth factor beta. Gastroenterology 105, 1323–1332 (1993).

    Article  CAS  PubMed  Google Scholar 

  99. Dignass, A., Lynch-Devaney, K., Kindon, H., Thim, L. & Podolsky, D. K. Trefoil peptides promote epithelial migration through a transforming growth factor beta-independent pathway. J. Clin. Invest. 94, 376–383 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Moyer, R. A., Wendt, M. K., Johanesen, P. A., Turner, J. R. & Dwinell, M. B. Rho activation regulates CXCL12 chemokine stimulated actin rearrangement and restitution in model intestinal epithelia. Lab. Invest. 87, 807–817 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Vongsa, R. A., Zimmerman, N. P. & Dwinell, M. B. CCR6 regulation of the actin cytoskeleton orchestrates human beta defensin-2- and CCL20-mediated restitution of colonic epithelial cells. J. Biol. Chem. 284, 10034–10045 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lickert, H. et al. Wnt/(beta)-catenin signaling regulates the expression of the homeobox gene Cdx1 in embryonic intestine. Development 127, 3805–3813 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Wang, L. C. et al. Disruption of hedgehog signaling reveals a novel role in intestinal morphogenesis and intestinal-specific lipid metabolism in mice. Gastroenterology 122, 469–482 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Wittkopf, N. et al. Activation of intestinal epithelial Stat3 orchestrates tissue defense during gastrointestinal infection. PLoS ONE 10, e0118401 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Pickert, G. et al. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J. Exp. Med. 206, 1465–1472 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Grivennikov, S. et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15, 103–113 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gilbert, S. et al. Enterocyte STAT5 promotes mucosal wound healing via suppression of myosin light chain kinase-mediated loss of barrier function and inflammation. EMBO Mol. Med. 4, 109–124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gilbert, S. et al. Activated STAT5 confers resistance to intestinal injury by increasing intestinal stem cell proliferation and regeneration. Stem Cell Rep. 4, 209–225 (2015).

    Article  CAS  Google Scholar 

  109. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03558152 (2021).

  110. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03650413 (2021).

  111. Salas, A. et al. JAK-STAT pathway targeting for the treatment of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 17, 323–337 (2020).

    Article  PubMed  Google Scholar 

  112. Gerlach, K. et al. The JAK1/3 inhibitor tofacitinib suppresses T cell homing and activation in chronic intestinal inflammation. J. Crohns Colitis https://doi.org/10.1093/ecco-jcc/jjaa162 (2020).

    Article  PubMed  Google Scholar 

  113. Sandborn, W. J. et al. Tofacitinib as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 376, 1723–1736 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Panes, J. et al. Long-term safety and tolerability of oral tofacitinib in patients with Crohn’s disease: results from a phase 2, open-label, 48-week extension study. Aliment. Pharmacol. Ther. 49, 265–276 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bain, C. C. & Mowat, A. M. Macrophages in intestinal homeostasis and inflammation. Immunol. Rev. 260, 102–117 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Parameswaran, N. & Patial, S. Tumor necrosis factor-alpha signaling in macrophages. Crit. Rev. Eukaryot. Gene Expr. 20, 87–103 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Na, Y. R., Stakenborg, M., Seok, S. H. & Matteoli, G. Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. Nat. Rev. Gastroenterol. Hepatol. 16, 531–543 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Yang, Z. et al. C-type lectin receptor LSECtin-mediated apoptotic cell clearance by macrophages directs intestinal repair in experimental colitis. Proc. Natl Acad. Sci. USA 115, 11054–11059 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lorchner, H. et al. Myocardial healing requires Reg3beta-dependent accumulation of macrophages in the ischemic heart. Nat. Med. 21, 353–362 (2015).

    Article  PubMed  CAS  Google Scholar 

  120. Zigmond, E. et al. Macrophage-restricted interleukin-10 receptor deficiency, but not IL-10 deficiency, causes severe spontaneous colitis. Immunity 40, 720–733 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Shindo, R. et al. Regenerating islet-derived protein (Reg)3beta plays a crucial role in attenuation of ileitis and colitis in mice. Biochem. Biophys. Rep. 21, 100738 (2020).

    PubMed  PubMed Central  Google Scholar 

  122. Czarnewski, P. et al. Conserved transcriptomic profile between mouse and human colitis allows unsupervised patient stratification. Nat. Commun. 10, 2892 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. McCarthy, N., Kraiczy, J. & Shivdasani, R. A. Cellular and molecular architecture of the intestinal stem cell niche. Nat. Cell Biol. 22, 1033–1041 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Kinchen, J. et al. Structural remodeling of the human colonic mesenchyme in inflammatory bowel disease. Cell 175, 372–386.e17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Martin, J. C. et al. Single-cell analysis of Crohn’s disease lesions identifies a pathogenic cellular module associated with resistance to anti-TNF therapy. Cell 178, 1493–1508.e20 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ayyaz, A. et al. Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell. Nature 569, 121–125 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Pull, S. L., Doherty, J. M., Mills, J. C., Gordon, J. I. & Stappenbeck, T. S. Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc. Natl Acad. Sci. USA 102, 99–104 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Nishida, A. et al. Can control of gut microbiota be a future therapeutic option for inflammatory bowel disease? World J. Gastroenterol. 27, 3317–3326 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Manichanh, C., Borruel, N., Casellas, F. & Guarner, F. The gut microbiota in IBD. Nat. Rev. Gastroenterol. Hepatol. 9, 599–608 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Shan, Y., Lee, M. & Chang, E. B. The gut microbiome and inflammatory bowel diseases. Annu. Rev. Med. 73, 455–468 (2022).

    Article  PubMed  CAS  Google Scholar 

  131. Tkach, S. et al. Current status and future therapeutic options for fecal microbiota transplantation. Medicina 58, 84 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Abraham, B. & Quigley, E. M. M. Antibiotics and probiotics in inflammatory bowel disease: when to use them? Frontline Gastroenterol. 11, 62–69 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Alam, A. et al. Redox signaling regulates commensal-mediated mucosal homeostasis and restitution and requires formyl peptide receptor 1. Mucosal Immunol. 7, 645–655 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Kinnebrew, M. A. et al. Interleukin 23 production by intestinal CD103+CD11b+ dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity 36, 276–287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Liu, H. et al. TLR5 mediates CD172α+ intestinal lamina propria dendritic cell induction of Th17 cells. Sci. Rep. 6, 22040 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dieckgraefe, B. K. et al. Expression of the regenerating gene family in inflammatory bowel disease mucosa: Reg Ialpha upregulation, processing, and antiapoptotic activity. J. Investig. Med. 50, 421–434 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. Qiu, J. et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 36, 92–104 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Parada Venegas, D. et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 10, 277 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Machiels, K. et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63, 1275–1283 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Jain, U. et al. Temporal regulation of the bacterial metabolite deoxycholate during colonic repair is critical for crypt regeneration. Cell Host Microbe 24, 353–363.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Okada, T. et al. Microbiota-derived lactate accelerates colon epithelial cell turnover in starvation-refed mice. Nat. Commun. 4, 1654 (2013).

    Article  PubMed  Google Scholar 

  142. Rodriguez-Colman, M. J. et al. Interplay between metabolic identities in the intestinal crypt supports stem cell function. Nature 543, 424–427 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Yu, T. et al. Exclusive enteral nutrition protects against inflammatory bowel disease by inhibiting NFkappaB activation through regulation of the p38/MSK1 pathway. Int. J. Mol. Med. 42, 1305–1316 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Alhagamhmad, M. H., Day, A. S., Lemberg, D. A. & Leach, S. T. Exploring and enhancing the anti-inflammatory properties of polymeric formula. J. Parenter. Enter. Nutr. 41, 436–445 (2017).

    Article  CAS  Google Scholar 

  145. Rolandsdotter, H., Jonsson-Videsater, K., Finkel, U. L. F., Eberhardson, Y. & Exclusive, M. Enteral nutrition: clinical effects and changes in mucosal cytokine profile in pediatric new inflammatory bowel disease. Nutrients 11, 414 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  146. Pigneur, B. et al. Mucosal healing and bacterial composition in response to enteral nutrition vs steroid-based induction therapy-a randomised prospective clinical trial in children with Crohn’s disease. J. Crohns Colitis 13, 846–855 (2019).

    Article  PubMed  Google Scholar 

  147. MacLellan, A. et al. The impact of exclusive enteral nutrition (EEN) on the gut microbiome in Crohn’s disease: a review. Nutrients 9, 5 (2017).

    Article  CAS  Google Scholar 

  148. Quince, C. et al. Extensive modulation of the fecal metagenome in children with Crohn’s disease during exclusive enteral nutrition. Am. J. Gastroenterol. 110, 1718–1729 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Alghamdi, A. et al. Untargeted metabolomics of extracts from faecal samples demonstrates distinct differences between paediatric Crohn’s disease patients and healthy controls but no significant changes resulting from exclusive enteral nutrition treatment. Metabolites 8, 82 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  150. Diederen, K. et al. Exclusive enteral nutrition mediates gut microbial and metabolic changes that are associated with remission in children with Crohn’s disease. Sci. Rep. 10, 18879 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Lambert, B., Lemberg, D. A., Leach, S. T. & Day, A. S. Longer-term outcomes of nutritional management of Crohn’s disease in children. Dig. Dis. Sci. 57, 2171–2177 (2012).

    Article  CAS  PubMed  Google Scholar 

  152. Lightner, A. L. et al. Matrix-delivered autologous mesenchymal stem cell therapy for refractory rectovaginal Crohn’s fistulas. Inflamm. Bowel Dis. 26, 670–677 (2019).

    Article  Google Scholar 

  153. Barnhoorn, M. C. et al. Long-term evaluation of allogeneic bone marrow-derived mesenchymal stromal cell therapy for Crohn’s disease perianal fistulas. J. Crohns Colitis 14, 64–70 (2019).

    Article  PubMed Central  Google Scholar 

  154. Ciccocioppo, R. et al. Long-term follow-up of crohn disease fistulas after local injections of bone marrow-derived mesenchymal stem cells. Mayo Clin. Proc. 90, 747–755 (2015).

    Article  PubMed  Google Scholar 

  155. Molendijk, I. et al. Allogeneic bone marrow-derived mesenchymal stromal cells promote healing of refractory perianal fistulas in patients with crohn’s disease. Gastroenterology 149, 918–27.e6 (2015).

    Article  PubMed  Google Scholar 

  156. Panes, J. et al. Expanded allogeneic adipose-derived mesenchymal stem cells (Cx601) for complex perianal fistulas in Crohn’s disease: a phase 3 randomised, double-blind controlled trial. Lancet 388, 1281–1290 (2016).

    Article  PubMed  Google Scholar 

  157. Duijvestein, M. et al. Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: results of a phase I study. Gut 59, 1662–1669 (2010).

    Article  PubMed  Google Scholar 

  158. Mayer, L. et al. Safety and tolerability of human placenta-derived cells (PDA001) in treatment-resistant Crohn’s disease: a phase 1 study. Inflamm. Bowel Dis. 19, 754–760 (2013).

    Article  PubMed  Google Scholar 

  159. Forbes, G. M. et al. A phase 2 study of allogeneic mesenchymal stromal cells for luminal Crohn’s disease refractory to biologic therapy. Clin. Gastroenterol. Assoc. 12, 64–71 (2014).

    Article  Google Scholar 

  160. Melmed, G. Y. et al. Human placenta-derived cells (PDA-001) for the treatment of moderate-to-severe Crohn’s disease: a phase 1b/2a study. Inflamm. Bowel Dis. 21, 1809–1816 (2015).

    Article  PubMed  Google Scholar 

  161. Ouboter, L. et al. Endoscopically injected allogeneic mesenchymal stromal cells alter the mucosal immune cell compartment in patients with ulcerative proctitis. J. Crohns Colitis 15, S098–S099 (2021).

    Article  Google Scholar 

  162. Ouboter, L. et al. Locally injected allogeneic bone marrow-derived mesenchymal stromal cells for the treatment of refractory proctitis: clinical results of a phase IIa trial. J. Crohns Colitis 15, S381 (2021).

    Article  Google Scholar 

  163. Niu, J., Yue, W., Le-Le, Z., Bin, L. & Hu, X. Mesenchymal stem cells inhibit T cell activation by releasing TGF-beta1 from TGF-beta1/GARP complex. Oncotarget 8, 99784–99800 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Engela, A. U. et al. Human adipose-tissue derived mesenchymal stem cells induce functional de-novo regulatory T cells with methylated FOXP3 gene DNA. Clin. Exp. Immunol. 173, 343–354 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Markovic, B. S. et al. Molecular and cellular mechanisms involved in mesenchymal stem cell-based therapy of inflammatory bowel diseases. Stem Cell Rev. Rep. 14, 153–165 (2018).

    Article  CAS  PubMed  Google Scholar 

  166. da Costa Goncalves, F. & Paz, A. H. Cell membrane and bioactive factors derived from mesenchymal stromal cells: Cell-free based therapy for inflammatory bowel diseases. World J. Stem Cell 11, 618–633 (2019).

    Article  Google Scholar 

  167. Lopez-Santalla, M. & Garin, M. I. Improving the efficacy of mesenchymal stem/stromal-based therapy for treatment of inflammatory bowel diseases. Biomedicines 9, 1507 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Fujii, M. et al. Human intestinal organoids maintain self-renewal capacity and cellular diversity in niche-inspired culture condition. Cell Stem Cell 23, 787–793.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  169. Sato, T. & Clevers, H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340, 1190–1194 (2013).

    Article  CAS  PubMed  Google Scholar 

  170. Okamoto, R. & Watanabe, M. Role of epithelial cells in the pathogenesis and treatment of inflammatory bowel disease. J. Gastroenterol. 51, 11–21 (2016).

    Article  CAS  PubMed  Google Scholar 

  171. Yui, S. et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat. Med. 18, 618–623 (2012).

    Article  CAS  PubMed  Google Scholar 

  172. Fukuda, M. et al. Small intestinal stem cell identity is maintained with functional Paneth cells in heterotopically grafted epithelium onto the colon. Genes Dev. 28, 1752–1757 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Fordham, R. P. et al. Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury. Cell Stem Cell 13, 734–744 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Kim, E. S. & Keam, S. J. Teduglutide: a review in short bowel syndrome. Drugs 77, 345–352 (2017).

    Article  CAS  PubMed  Google Scholar 

  175. Drucker, D. J., Erlich, P., Asa, S. L. & Brubaker, P. L. Induction of intestinal epithelial proliferation by glucagon-like peptide 2. Proc. Natl Acad. Sci. USA 93, 7911–7916 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Guan, X. et al. GLP-2-mediated up-regulation of intestinal blood flow and glucose uptake is nitric oxide-dependent in TPN-fed piglets 1. Gastroenterology 125, 136–147 (2003).

    Article  CAS  PubMed  Google Scholar 

  177. Tsai, C. H., Hill, M., Asa, S. L., Brubaker, P. L. & Drucker, D. J. Intestinal growth-promoting properties of glucagon-like peptide-2 in mice. Am. J. Physiol. 273, E77–E84 (1997).

    CAS  PubMed  Google Scholar 

  178. Shin, E. D., Estall, J. L., Izzo, A., Drucker, D. J. & Brubaker, P. L. Mucosal adaptation to enteral nutrients is dependent on the physiologic actions of glucagon-like peptide-2 in mice. Gastroenterology 128, 1340–1353 (2005).

    Article  CAS  PubMed  Google Scholar 

  179. Litvak, D. A., Hellmich, M. R., Evers, B. M., Banker, N. A. & Townsend, C. M. Jr. Glucagon-like peptide 2 is a potent growth factor for small intestine and colon. J. Gastrointest. Surg. 2, 146–150 (1998).

    Article  CAS  PubMed  Google Scholar 

  180. Kouris, G. J. et al. The effect of glucagon-like peptide 2 on intestinal permeability and bacterial translocation in acute necrotizing pancreatitis. Am. J. Surg. 181, 571–575 (2001).

    Article  CAS  PubMed  Google Scholar 

  181. Benjamin, M. A., McKay, D. M., Yang, P. C., Cameron, H. & Perdue, M. H. Glucagon-like peptide-2 enhances intestinal epithelial barrier function of both transcellular and paracellular pathways in the mouse. Gut 47, 112–119 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Hsieh, J. et al. Glucagon-like peptide-2 increases intestinal lipid absorption and chylomicron production via CD36. Gastroenterology 137, 997–1005.e1-4 (2009).

    Article  CAS  PubMed  Google Scholar 

  183. Anbazhagan, A. N. et al. GLP-1 nanomedicine alleviates gut inflammation. Nanomedicine 13, 659–665 (2017).

    Article  CAS  PubMed  Google Scholar 

  184. Gu, J. et al. The protective and anti-inflammatory effects of a modified glucagon-like peptide-2 dimer in inflammatory bowel disease. Biochem. Pharmacol. 155, 425–433 (2018).

    Article  CAS  PubMed  Google Scholar 

  185. Drucker, D. J., Yusta, B., Boushey, R. P., DeForest, L. & Brubaker, P. L. Human [Gly2]GLP-2 reduces the severity of colonic injury in a murine model of experimental colitis. Am. J. Physiol. 276, G79–G91 (1999).

    CAS  PubMed  Google Scholar 

  186. L’Heureux, M. C. & Brubaker, P. L. Glucagon-like peptide-2 and common therapeutics in a murine model of ulcerative colitis. J. Pharmacol. Exp. Ther. 306, 347–354 (2003).

    Article  PubMed  CAS  Google Scholar 

  187. Sigalet, D. L. et al. Enteric neural pathways mediate the anti-inflammatory actions of glucagon-like peptide 2. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G211–G221 (2007).

    Article  CAS  PubMed  Google Scholar 

  188. Yang, P. Y. et al. Stapled, long-acting glucagon-like peptide 2 analog with efficacy in dextran sodium sulfate induced mouse colitis models. J. Med. Chem. 61, 3218–3223 (2018).

    Article  CAS  PubMed  Google Scholar 

  189. Qi, K. K., Lv, J. J., Wu, J. & Xu, Z. W. Therapeutic effects of different doses of polyethylene glycosylated porcine glucagon-like peptide-2 on ulcerative colitis in male rats. BMC Gastroenterol. 17, 34 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Salaga, M. et al. New peptide inhibitor of dipeptidyl peptidase IV, EMDB-1 extends the half-life of GLP-2 and attenuates colitis in mice after topical administration. J. Pharmacol. Exp. Ther. 363, 92–103 (2017).

    Article  CAS  PubMed  Google Scholar 

  191. Salaga, M. et al. Novel peptide inhibitor of dipeptidyl peptidase IV (Tyr-Pro-D-Ala-NH2) with anti-inflammatory activity in the mouse models of colitis. Peptides 108, 34–45 (2018).

    Article  CAS  PubMed  Google Scholar 

  192. Ban, H. et al. The DPP-IV inhibitor ER-319711 has a proliferative effect on the colonic epithelium and a minimal effect in the amelioration of colitis. Oncol. Rep. 25, 1699–1703 (2011).

    CAS  PubMed  Google Scholar 

  193. Alavi, K., Schwartz, M. Z., Palazzo, J. P. & Prasad, R. Treatment of inflammatory bowel disease in a rodent model with the intestinal growth factor glucagon-like peptide-2. J. Pediatr. Surg. 35, 847–851 (2000).

    Article  CAS  PubMed  Google Scholar 

  194. Arthur, G. L., Schwartz, M. Z., Kuenzler, K. A. & Birbe, R. Glucagonlike peptide-2 analogue: a possible new approach in the management of inflammatory bowel disease. J. Pediatr. Surg. 39, 448–452 (2004).

    Article  PubMed  Google Scholar 

  195. Arda-Pirincci, P. & Bolkent, S. The role of glucagon-like peptide-2 on apoptosis, cell proliferation, and oxidant-antioxidant system at a mouse model of intestinal injury induced by tumor necrosis factor-alpha/actinomycin D. Mol. Cell Biochem. 350, 13–27 (2011).

    Article  CAS  PubMed  Google Scholar 

  196. Ivory, C. P., Wallace, L. E., McCafferty, D. M. & Sigalet, D. L. Interleukin-10-independent anti-inflammatory actions of glucagon-like peptide 2. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G1202–G1210 (2008).

    Article  CAS  PubMed  Google Scholar 

  197. Gu, J. et al. A DPP-IV-resistant glucagon-like peptide-2 dimer with enhanced activity against radiation-induced intestinal injury. J. Control. Rel. 260, 32–45 (2017).

    Article  CAS  Google Scholar 

  198. Buchman, A. L., Katz, S., Fang, J. C., Bernstein, C. N., Abou-Assi, S. G. & Teduglutide Study Group. Teduglutide, a novel mucosally active analog of glucagon-like peptide-2 (GLP-2) for the treatment of moderate to severe Crohn’s disease. Inflamm. Bowel Dis. 16, 962–973 (2010).

    Article  PubMed  Google Scholar 

  199. Al Draiweesh, S., Ma, C., Gregor, J. C., Rahman, A. & Jairath, V. Teduglutide in patients with active Crohn’s disease and short bowel syndrome. Inflamm. Bowel Dis. 25, e109 (2019).

    Article  PubMed  Google Scholar 

  200. Kochar, B. et al. Safety and efficacy of teduglutide (Gattex) in patients with Crohn’s disease and need for parenteral support due to short bowel syndrome-associated intestinal failure. J. Clin. Gastroenterol. 51, 508–511 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. George, A. T., Li, B. H. & Carroll, R. E. Off-label teduglutide therapy in non-intestinal failure patients with chronic malabsorption. Dig. Dis. Sci. 64, 1599–1603 (2019).

    Article  CAS  PubMed  Google Scholar 

  202. Slonim, A. E. et al. A preliminary study of growth hormone therapy for Crohn’s disease. N. Engl. J. Med. 342, 1633–1637 (2000).

    Article  CAS  PubMed  Google Scholar 

  203. Sinha, A., Nightingale, J., West, K. P., Berlanga-Acosta, J. & Playford, R. J. Epidermal growth factor enemas with oral mesalamine for mild-to-moderate left-sided ulcerative colitis or proctitis. N. Engl. J. Med. 349, 350–357 (2003).

    Article  CAS  PubMed  Google Scholar 

  204. Dejaco, C. et al. An open-label pilot study of granulocyte colony-stimulating factor for the treatment of severe endoscopic postoperative recurrence in Crohn’s disease. Digestion 68, 63–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  205. Korzenik, J. R. & Dieckgraefe, B. K. An open-labelled study of granulocyte colony-stimulating factor in the treatment of active Crohn’s disease. Aliment. Pharmacol. Ther. 21, 391–400 (2005).

    Article  CAS  PubMed  Google Scholar 

  206. Dieckgraefe, B. K. & Korzenik, J. R. Treatment of active Crohn’s disease with recombinant human granulocyte-macrophage colony-stimulating factor. Lancet 360, 1478–1480 (2002).

    Article  PubMed  Google Scholar 

  207. Korzenik, J. R., Dieckgraefe, B. K., Valentine, J. F., Hausman, D. F. & Gilbert, M. J., Sargramostim in Crohn’s Disease Study Group. Sargramostim for active Crohn’s disease. N. Engl. J. Med. 352, 2193–2201 (2005).

    Article  CAS  PubMed  Google Scholar 

  208. Sandborn, W. J. et al. Repifermin (keratinocyte growth factor-2) for the treatment of active ulcerative colitis: a randomized, double-blind, placebo-controlled, dose-escalation trial. Aliment. Pharmacol. Ther. 17, 1355–1364 (2003).

    Article  CAS  PubMed  Google Scholar 

  209. Krishnan, K., Arnone, B. & Buchman, A. Intestinal growth factors: potential use in the treatment of inflammatory bowel disease and their role in mucosal healing. Inflamm. Bowel Dis. 17, 410–422 (2011).

    Article  PubMed  Google Scholar 

  210. Ihara, S., Hirata, Y. & Koike, K. TGF-beta in inflammatory bowel disease: a key regulator of immune cells, epithelium, and the intestinal microbiota. J. Gastroenterol. 52, 777–787 (2017).

    Article  CAS  PubMed  Google Scholar 

  211. Gao, Y. et al. Myosin light chain kinase as a multifunctional regulatory protein of smooth muscle contraction. IUBMB Life 51, 337–344 (2001).

    Article  CAS  PubMed  Google Scholar 

  212. Kuo, I. Y. & Ehrlich, B. E. Signaling in muscle contraction. Cold Spring Harb. Perspect. Biol. 7, a006023 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Chen, X., Pavlish, K. & Benoit, J. N. Myosin phosphorylation triggers actin polymerization in vascular smooth muscle. Am. J. Physiol. Heart Circ. Physiol. 295, H2172–H2177 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. He, W. Q. et al. Myosin light chain kinase is central to smooth muscle contraction and required for gastrointestinal motility in mice. Gastroenterology 135, 610–620 (2008).

    Article  CAS  PubMed  Google Scholar 

  215. Shen, L. et al. Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure. J. Cell Sci. 119, 2095–2106 (2006).

    Article  CAS  PubMed  Google Scholar 

  216. Xiong, Y. et al. Myosin light chain kinase: a potential target for treatment of inflammatory diseases. Front. Pharmacol. 8, 292 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Blair, S. A., Kane, S. V., Clayburgh, D. R. & Turner, J. R. Epithelial myosin light chain kinase expression and activity are upregulated in inflammatory bowel disease. Lab. Invest. 86, 191–201 (2006).

    Article  CAS  PubMed  Google Scholar 

  218. Su, L. et al. TNFR2 activates MLCK-dependent tight junction dysregulation to cause apoptosis-mediated barrier loss and experimental colitis. Gastroenterology 145, 407–415 (2013).

    Article  CAS  PubMed  Google Scholar 

  219. Xiong, Y. et al. Restored impaired barrier function via downregulation of MLCK by microRNA-1 in rat colitis model. Front. Pharmacol. 7, 134 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Beard, R. S. Jr. et al. Non-muscle Mlck is required for beta-catenin- and FoxO1-dependent downregulation of Cldn5 in IL-1beta-mediated barrier dysfunction in brain endothelial cells. J. Cell Sci. 127, 1840–1853 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Hirakawa, M. et al. Low-dose IL-2 selectively activates subsets of CD4+ Tregs and NK cells. JCI Insight 1, e89278 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  222. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04987307 (2022).

  223. Donohue, J. H. & Rosenberg, S. A. The fate of interleukin-2 after in vivo administration. J. Immunol. 130, 2203–2208 (1983).

    CAS  PubMed  Google Scholar 

  224. Ottolenghi, A. et al. Life-extended glycosylated IL-2 promotes Treg induction and suppression of autoimmunity. Sci. Rep. 11, 7676 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Tchao, N. & et al. Efavaleukin alfa, a novel il-2 mutein, selectively expands regulatory T cells in patients with SLE: interim results of a phase 1b multiple ascending dose study. Arthritis Rheumatol. 73 (Suppl. 10), ABSTRACT 1734 (2021).

    Google Scholar 

  226. Petrey, A. C. & de la Motte, C. A. The extracellular matrix in IBD: a dynamic mediator of inflammation. Curr. Opin. Gastroenterol. 33, 234–238 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Howard, A. M. et al. DSS-induced damage to basement membranes is repaired by matrix replacement and crosslinking. J. Cell Sci. 132, jcs226860 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Derkacz, A., Olczyk, P., Olczyk, K. & Komosinska-Vassev, K. The role of extracellular matrix components in inflammatory bowel diseases. J. Clin. Med. 10, 1122 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Bailey, J. R. et al. IL-13 promotes collagen accumulation in Crohn’s disease fibrosis by down-regulation of fibroblast MMP synthesis: a role for innate lymphoid cells? PLoS ONE 7, e52332 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Koelink, P. J. et al. Collagen degradation and neutrophilic infiltration: a vicious circle in inflammatory bowel disease. Gut 63, 578–587 (2014).

    Article  CAS  PubMed  Google Scholar 

  231. Bevivino, G., Sedda, S., Marafini, I. & Monteleone, G. Oligonucleotide-based therapies for inflammatory bowel disease. BioDrugs 32, 331–338 (2018).

    Article  PubMed  Google Scholar 

  232. Zorzi, F. et al. A phase 1 open-label trial shows that smad7 antisense oligonucleotide (GED0301) does not increase the risk of small bowel strictures in Crohn’s disease. Aliment. Pharmacol. Ther. 36, 850–857 (2012).

    Article  CAS  PubMed  Google Scholar 

  233. Sands, B. E. et al. Mongersen (GED-0301) for active Crohn’s disease: results of a phase 3 study. Am. J. Gastroenterol. 115, 738–745 (2020).

    Article  PubMed  Google Scholar 

  234. Izzo, R. et al. Knockdown of Smad7 with a specific antisense oligonucleotide attenuates colitis and colitis-driven colonic fibrosis in mice. Inflamm. Bowel Dis. 24, 1213–1224 (2018).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Villablanca lab for helpful comments. E.J.V. was supported by grants from the Swedish Research Council, VR grants K2015-68X-22765-01-6 and 2018-02533, Formas grant no. FR-2016/0005, Cancerfonden (19 0395 Pj), and the Wallenberg Academy Fellow program (2019.0315). K.S. has received support from The Swedish Medical Association (Svenska läkarsällskapet). C.R.H.H. gratefully acknowledges support from Julins Foundation, Bengt Ihre Fellowship, The Swedish Medical Association (Svenska Läkarsällskapet), the Calder Foundation, an ECCO project grant, Gastrofonden, MagTarm fund, Professor Nanna Svartz Fund and a clinical post-doc from Region Stockholm.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Eduardo J. Villablanca or Charlotte R. H. Hedin.

Ethics declarations

Competing interests

E.J.V. has received research grants from F. Hoffmann-La Roche. C.R.H.H. has received speaker fees from Takeda, Ferring, AbbVie, and Janssen and consultancy fees from Pfizer. She has acted as local principal investigator for clinical trials for Janssen and GlaxoSmithKline. She has received project grants from Takeda and Tillotts. K.S. declares no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Silvio Danese and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villablanca, E.J., Selin, K. & Hedin, C.R.H. Mechanisms of mucosal healing: treating inflammatory bowel disease without immunosuppression?. Nat Rev Gastroenterol Hepatol 19, 493–507 (2022). https://doi.org/10.1038/s41575-022-00604-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-022-00604-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing