Skip to main content
Log in

Composition of Typical Soil Minerals and Quantitative Analysis for Influence of Iron and Manganese Forms on Purple Soil Color in Northeastern Sichuan, China

  • SOIL PHYSICS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Eight soil samples from the Jurassic Shaximiao Formation (J2s) in the Sichuan Basin, China, were taken as the research object to explore the correlation and quantitative relationship between soil color and mineral composition, iron, and manganese (free state Fed/Mnd, active state Feo/Mno, and complex state Fep/Mnp). The results show that the kaolinite and muscovite contents in purple clay are higher than those in soil of other colors, and most albite content is lower than that in soil of other colors. The iron and manganese contents in purple soil are higher than those in other soils. Silicon and sodium elements make the soil brighter; magnesium reduces the brightness; aluminum, iron, potassium, titanium, and manganese make the soil redder; and manganese elements will make the soil more yellow. The soil particle size is significantly positively correlated with L* (brightness), a* (red–green degree), and b* (yellow–blue degree), and organic matter is significantly negatively correlated with L* while positive correlated with a*. L* is affected by Feo, Fep, Mno, and Mnp, of which Mnp contributes the most to the brightness of L*; a* is affected by Feo, Fed, and Mno, of which Mno has the greatest contribution to a*; and b* is only affected by Fep. In summary, the particle size and the types and contents of clay minerals and elements will affect the color of the soil, and the various forms of iron and manganese have a significant effect on the soil color. The results provide an important reference for the study of purple soil system classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. K. Baumann, I. Schöning, M. Schrumpf, R. H. Ellerbrock, and P. Leinweber, “Rapid assessment of soil organic matter: soil color analysis and Fourier transform infrared spectroscopy,” Geoderma 278, 49–57 (2016). https://doi.org/10.1016/j.geoderma.2016.05.012

    Article  Google Scholar 

  2. B. Davey, J. Russell, and M. J. Wilson, “Iron oxide and clay minerals and their relation to colors of red and yellow podzolic soils near Sydney, Australia,” Geoderma 14 (2), 125–138 (1975). https://doi.org/10.1016/0016-7061(75)90071-3

    Article  Google Scholar 

  3. H. G. dos Santos, P. K. T. Jacomine, H. C. dos Anjos, V. A. de Oliveira, J. F. Lumbreras, M. R. Coelho, J. A. de Almeida, J. C. de Araujo, J. B. de Oliveira, and T. J. F. Cunha, Sistema Brasileiro de Classificação de Solos: Brasília, Ed. by H. G. dos Santos (Embrapa Solos, Brasília, 2018), pp. 20–23. ISBN 978-85-7035-817-2

    Google Scholar 

  4. J. Du, Y. Luo, W. Zhang, C. Xu, and C. Wei, “Major element geochemistry of purple soils/rocks in the red Sichuan Basin, China: implications of their diagenesis and pedogenesis,” Environ. Earth Sci. 69 (6), 1831–1844 (2013). https://doi.org/10.1007/s12665-012-2019-y

    Article  Google Scholar 

  5. F. M. Ezzein and R. J. Bathurst, “A transparent sand for geotechnical laboratory modeling,” Geotech. Test. J. 34 (6), 590–601 (2011). https://doi.org/10.1520/GTJ103808

    Article  Google Scholar 

  6. R. N. Fernandez and D. G. Schulze, “Munsell colors of soils simulated by mixtures of goethite and hematite with kaolinite,” Z. Pflanzenernaehr. Bodenkd. 155 (5), 473–478 (1992). https://doi.org/10.1002/jpln.19921550520

    Article  Google Scholar 

  7. Y. R. He, Y. K. Santo, and H. Wada, “Study on purple soil color,” Acta Pedol. Sin. 30 (6), 247–250 (1990).

    Google Scholar 

  8. Y. R. He, C. M. Huang, and A. D. Gong, “Approach to microstructure of purple soils in China–Concurrent study on its application in lower category of soils of soil taxonomy,” Southwest China J. Agricul. Sci. 15 (1), 65–69 (2002).

    Google Scholar 

  9. S. Ibáñez-Asensio, A. Marques-Mateu, H. Moreno-Ramón, and S. Balasch, “Statistical relationships between soil colour and soil attributes in semiarid areas,” Biosyst. Eng. 116 (2), 120–129 (2013). https://doi.org/10.1016/j.biosystemseng.2013.07.013

    Article  Google Scholar 

  10. G. Jha, D. Sihi, B. Dari, H. Kaur, M. A. Nocco, A. Ulery, and K. Lombard, “Rapid and inexpensive assessment of soil total iron using Nix Pro color sensor,” Agric. Environ. Lett. 6 (3), e20050 (2021). https://doi.org/10.1002/ael2.20050

    Article  Google Scholar 

  11. Q. M. Ketterings and J. M. Bigham, “Soil color as an indicator of slash-and-burn fire severity and soil fertility in Sumatra, Indonesia,” Soil Sci. Soc. Am. J. 64 (5), 1826–1833 (2000). https://doi.org/10.2136/sssaj2000.6451826x

    Article  Google Scholar 

  12. N. P. Kirillova, Yu. N. Vodyanitskii, and T. M. Sileva, “Conversion of soil color parameters from the Munsell system to the CIE-L*a*b* system,” Eurasian Soil Sci. 48, 468–475 (2015). https://doi.org/10.1134/S1064229315050026

    Article  Google Scholar 

  13. N. P. Kirillova, T. M. Sileva, T. Yu. Ul’yanova, I. E. Smirnova, A. S. Ul’yanova, and E. K. Burova, “Color diagnostics of soil horizons (by the example of soils from Moscow region),” Eurasian Soil Sci. 51, 1348–1356 (2018). https://doi.org/10.1134/S1064229318110042

    Article  Google Scholar 

  14. B. Kone, A. Yao-Kouame, J. Ettien, S. Oikeh, G. Yoro, and S. Diatta, “Modeling the relationship between soil color and particle size for soil survey in ferralsol environments,” Soil Environ. 28 (2), 93–105 (2009)

    Google Scholar 

  15. S. Logsdon, “Encyclopedia of Soil Science,” Edited by Ward Chesworth. Springer, Dordrecht, The Netherlands. 2008. 902 p. ISBN: 978–4020–3944–2,” Soil Sci. Soc. Am. J. 72 (3), 862 (2008)

  16. W. D. Liu, F. Baret, X. F. Gu, Q. X. Tong, L. F. Zheng, and B. Zhang, “Relating soil surface moisture to reflectance,” Remote Sens. Environ. 81 (2–3), 238–246 (2002). https://doi.org/10.1016/S0034-4257(01)00347-9

    Article  Google Scholar 

  17. B. Lucke and T. Sprafke, “Correlation of soil color, redness ratings, and weathering indices of Terrae Calcis along a precipitation gradient in northern Jordan,” in Soils and Sediments as Archives of Environmental Change. Geoarchaeology and Landscape Change in the Subtropics and Tropics (Fränkische Geographische Gesellschaft, Erlangen, 2015), Ch. 5, pp. 53–68.

  18. M. Mancini, D. C. Weindorf, M. E. C. Monteiro, Á. J. G. de Faria, A. F. dos Santos Teixeira, W. de Lima, F. R. D. de Lima, T. S. B. Dijair, F. D. Marques, D. Ribeiro, S. H. G. Silva, S. Chakraborty, and N. Curi, “From sensor data to Munsell color system: machine learning algorithm applied to tropical soil color classification via Nix™ Pro sensor,” Geoderma 375, 114471 (2020). https://doi.org/10.1016/j.geoderma.2020.114471

    Article  Google Scholar 

  19. E. F. Mcbride, “Significance of color in red, green, purple, olive, brown, and gray beds of Difunta Group, northeastern Mexico,” J. Sedimentary Res. 44 (3), 760–773 (1974). https://doi.org/10.1306/212F6B9A-2B24-11D7-86480001-02C1865D

    Article  Google Scholar 

  20. C. S. Mescouto, V. P. Lemos, H. A. Dantas Filho, M. L. da Costa, D. C. Kern, and K. G. Fernandes, “Distribution and availability of copper, iron, manganese and zinc in the archaeological black earth profile from the Amazon region,” J. Bras. Chem. Soc. 22, 1484–1492 (2011).

    Google Scholar 

  21. N. Moritsuka, K. Kawamura, Y. Tsujimoto, M. Rabenarivo, A. Andriamananjara, T. Rakotoson, and T. Razafimbelo, “Comparison of visual and instrumental measurements of soil color with different low-cost colorimeters,” Soil Sci. Plant Nutr. 65 (6), 605–615 (2019). https://doi.org/10.1080/00380768.2019.1676624

    Article  Google Scholar 

  22. C. Mullins and K. Panayiotopoulos, “The strength of unsaturated mixtures of sand and kaolin and the concept of effective stress,” J. Soil Sci. 35 (3), 459–468 (1984). https://doi.org/10.1111/j.1365-2389.1984.tb00303.x

    Article  Google Scholar 

  23. W. T. Oh, V. K. Garga, and S. K. Vanapalli, “Shear strength characteristics of statically compacted unsaturated kaolin,” Can. Geotech. J. 45 (7), 910–922 (2008). https://doi.org/10.1139/T08-032

    Article  Google Scholar 

  24. L. Parviz, “Performance evaluation of remote sensing data with machine learning technique to determine soil color,” Pol. J. Soil Sci. 53 (1), 97 (2020). https://doi.org/10.17951/pjss.2020.53.1.97

    Article  Google Scholar 

  25. M. Persson, “Estimating surface soil moisture from soil color using image analysis,” Vadose Zone J. 4 (4), 1119–1122 (2005). https://doi.org/10.2136/vzj2005.0023

    Article  Google Scholar 

  26. R. R. Poppiel, M. P. C. Lacerda, R. Rizzo, J. L. Safanelli, B. R. Bonfatti, N. E. Q. Silvero, and J. A. M. Dematte, “Soil color and mineralogy mapping using proximal and remote sensing in Midwest Brazil,” Remote Sens. 12 (7), 1197 (2020). https://doi.org/10.3390/rs12071197

    Article  Google Scholar 

  27. P. V. Ramos, A. V. Inda, V. Barrón, D. S. Siqueira, J. M. Júnior, and D. D. B. Teixeira, “Color in subtropical Brazilian soils as determined with a Munsell chart and by diffuse reflectance spectroscopy,” Catena 193, 104609 (2020). https://doi.org/10.1016/j.catena.2020.104609

    Article  Google Scholar 

  28. M. Sánchez-Marañón, A. Romero-Freire, and F. J. Martín-Peinado, “Soil-color changes by sulfuricization induced from a pyritic surface sediment,” Catena 135, 173–183 (2015). https://doi.org/10.1016/j.catena.2015.07.023

    Article  Google Scholar 

  29. M. Shaif, F. Siddiquie, R. Khan, and J. Alam, “Occurrences, distribution, and evaluation of manganese ores in Banswara Manganese Ore Belt, Banswara district (Rajasthan), India,” Min., Metall. Explor. 38 (5), 2101–2116 (2021). https://doi.org/10.1007/s42461-021-00480-1

    Article  Google Scholar 

  30. S. J. Tang, D. J. Sun, Y. F. Luo, D. H. Zhou, R. He, J. H. Mao, and Y. Luo,"The fertility of purple soil in relation to the characterlstics of parent material in sichuan basin,” Acta Pedol. Sin. 21 (2), 123–133 (1984).

    Google Scholar 

  31. G. J. Taylor and A. Crowder, “Use of the DCB technique for extraction of hydrous iron oxides from roots of wetland plants,” Am. J. Bot. 70 (8), 1254–1257 (1983). https://doi.org/10.1002/j.1537-2197.1983.tb12474.x

    Article  Google Scholar 

  32. W. G. Teixeira and G. C. Martins, “Soil physical characterization,” in Amazonian Dark Earths, Ed. by J. Lehmann, et al. (Springer-Verlag, Dordrecht, 2003), pp. 271–286. https://doi.org/10.1007/1-4020-2597-1_15

  33. J. Torrent, U. Schwertmann, H. Fechter, and F. Alferez, “Quantitative relationships between soil color and hematite content,” Soil Sci. 136 (6), 354–358 (1983)

    Article  Google Scholar 

  34. Yu. N. Vodyanitskii and N. P. Kirillova, “Application of the CIE-L*a*b* system to characterize soil color,” Eurasian Soil Sci. 49, 1259–1268 (2016). https://doi.org/10.1134/S1064229316110107

    Article  Google Scholar 

  35. Yu. N. Vodyanitskii and A. Savichev, “The influence of organic matter on soil color using the regression equations of optical parameters in the system CIE-L*a*b*,” Ann. Agrar. Sci. 15 (3), 380–385 (2017). https://doi.org/10.1016/j.aasci.2017.05.023

    Article  Google Scholar 

  36. F. S. Wei, J. S. Chen and Y. Y. Wu, “Research on the background value of soil environment in China,” Environ. Sci. 12 (4), 12–19 (1991).

    Google Scholar 

  37. Y. Xiao, J. Tang, and M. Kuang Wang, “Physicochemical properties of three typical purple soils with different parent materials and land uses in Sichuan Basin, China,” Nat. Resour. Eng. 1 (2), 59–68 (2016). https://doi.org/10.1080/23802693.2016.1258854

    Article  Google Scholar 

  38. Z. M. Yan, D. G. Yuan, X. X. Yu, Y. Lv, F. Liu and Z. Cheng, “Quantitative relationship between chromaticity parameters and iron,manganese and organic matter of purple soil,” Chin. J. Soil Sci. 58 (2), 372–380 (2021).

    Google Scholar 

  39. Z. H. Zhang, W. Liu, L. Han, X. C. Chen, Q. Cui, H. Y. Yao, and Z. L. Wang, “Disintegration behavior of strongly weathered purple mudstone in drawdown area of three gorges reservoir, China,” Geomorphology 315, 68–79 (2018). https://doi.org/10.1016/j.geomorph.2018.05.008

    Article  Google Scholar 

  40. J. Zhao, X. He, and T. Shao, “Material composition and microstructure of purple soil and purple mudstone in Chongqing area,” Acta Pedol. Sin. 49 (2), 212–219 (2012). https://doi.org/10.11766/10.11766/trxb201103200099

    Article  Google Scholar 

  41. S. Q. Zhong, Z. Han, J. Du, E. Ci, J. P. Ni, D. T. Xie, and C. F. Wei, “Relationships between the lithology of purple rocks and the pedogenesis of purple soils in the Sichuan Basin, China,” Sci. Rep. 9 (1), 1–13 (2019). https://doi.org/10.1038/s41598-019-49687-9

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the National Nature Science Foundation of China (Grant no. 42172338), Sichuan Science Technology Program (Grant no. 2021YJ0327), National Basic Research Program of China (973 Program: 2014CB846003), and Longshan Academic Talent Research Supporting Program of SWUST (18LZX507).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. X. Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y.F., Liu, Z.L., Rao, H.Y. et al. Composition of Typical Soil Minerals and Quantitative Analysis for Influence of Iron and Manganese Forms on Purple Soil Color in Northeastern Sichuan, China. Eurasian Soil Sc. 55, 781–789 (2022). https://doi.org/10.1134/S1064229322060084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322060084

Keywords:

Navigation