Skip to main content
Log in

Thermal Decomposition of Co–Cu Double Salicylate Complex under Argon Atmosphere Resulting in Metal–Carbon Compositions

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Thermal decomposition of double complex (DC) [Co(NH3)6]Cl[Cu(C7H4O3)2] · 3H2O under inert atmosphere (argon) at high (>700°C) temperatures leads to formation of metal–carbon Co–Cu–C compositions. The reaction proceeds by sequential elimination of coordinated ammonia from the cationic portion of DC and decomposition of coordinated salicylate with evolution of phenol and its derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. F. Shahzad, M. Alhabeb, C. B. Hatter, et al., Science 353, 1137 (2016). https://doi.org/10.1126/science.aag2421

    Article  CAS  PubMed  Google Scholar 

  2. Hualiang Lv, Zhihong Yang, Paul Luyuan Wang, et al., Adv. Mater. 30, 1706343 (2018). https://doi.org/10.1002/adma.201706343

    Article  CAS  Google Scholar 

  3. V. V. Trineeva, M. A. Vakhrushina, and V. I. Kodolov, Vest. Udmurt. Univ. Fiz. Khim. 1, 39 (2012).

    Google Scholar 

  4. Jun Xiang, Xionghui Zhang, Qin Ye, et al., Mater. Res. Bull. 60, 589 (2014). https://doi.org/10.1016/j.materresbull.2014.09.032

    Article  CAS  Google Scholar 

  5. Z. Song, X. Liu, X. Sun, et al., Carbon 151, 36 (2019). https://doi.org/10.1016/j.carbon.2019.05.025

    Article  CAS  Google Scholar 

  6. Sh. Liu, Xia. Du, J. Xu, and S. Guo, Solid State Commun. 312, 113876 (2020). https://doi.org/10.1016/j.ssc.2020.113876

    Article  CAS  Google Scholar 

  7. Yang. Haibo, Wen. Bo, and Wang. Lei, Appl. Surf. Sci. 509, 145336 (2020). https://doi.org/10.1016/j.apsusc.2020.145336

  8. L. Lyu, F. Wang, X. Zhang, et al., Carbon 172, 488 (2021). https://doi.org/10.1016/j.carbon.2020.10.021

    Article  CAS  Google Scholar 

  9. Hailong Xu, Xiaowei Yin, Minghang Li, et al., Carbon 132, 343 (2018). https://doi.org/10.1016/j.carbon.2018.02.040

    Article  CAS  Google Scholar 

  10. Yizao Wan, Jian Xiao, Chunzhi Li, et al., J. Magn. Magn. Mater. 399, 252 (2016). https://doi.org/10.1016/j.jmmm.2015.10.006

    Article  CAS  Google Scholar 

  11. R. N. Kyutt, A. M. Danishevskii, E. A. Smorgonskaya, et al., Semiconductors 37, 784 (2003). https://doi.org/10.1134/1.1592850

    Article  CAS  Google Scholar 

  12. R. N. Kyutt, É. A. Smorgonskaya, A. M. Danishevskii, et al., Phys. Solid State 41, 808 (1999). https://doi.org/10.1134/1.1130879

    Article  CAS  Google Scholar 

  13. R. N. Kyutt, É. A. Smorgonskaya, A. M. Danishevskii, et al., Phys. Solid State 41, 1359 (1999). https://doi.org/10.1134/1.1130998

    Article  CAS  Google Scholar 

  14. E. L. Dzidziguri, E. N. Sidorova, K. A. Bagdasarova, et al., Crystallogr. Rep. 53, 316 (2008). https://doi.org/10.1134/S1063774508020223

    Article  CAS  Google Scholar 

  15. E. L. Dzidziguri, D. G. Muratov, L. M. Zemtsov, et al., Nanotechnol. Russia 7, 62 (2012). https://doi.org/10.1134/S1995078012010041

    Article  Google Scholar 

  16. V. V. Trineeva, V. I. Kodolov, and T. M. Makhneva, Nanotekhnika 4, 3 (2013).

    Google Scholar 

  17. V. I. Kodolov, Yu. V. Kovyazin, A. I. Zakharov, et al., Proceedings of the Practical Conference “Nanotechnology for Production-2010,” Fryazino, 2010, p. 53.

  18. D. P. Domonov, S. I. Pechenyuk, Yu. P. Semushina, et al., Thermochim. Acta 687, 178578 (2020). https://doi.org/10.1016/j.tca.2020.178578

    Article  CAS  Google Scholar 

  19. D. P. Domonov, S. I. Pechenyuk, A. T. Belyaevskii, et al., MDPI Nanomaterials 10, 389 (2020). https://doi.org/10.3390/nano10020389

    Article  CAS  Google Scholar 

  20. S. I. Pechenyuk, D. P. Domonov, Yu. P. Semushina, et al., Thermochim. Acta 703, 179009 (2021). https://doi.org/10.1016/j.tca.2021.179009

    Article  CAS  Google Scholar 

  21. D. P. Domonov, S. I. Pechenyuk, N. L. Mikhailova, et al., Russ. J. Inorg. Chem. 52, 1027 (2007). https://doi.org/10.1134/S0036023607070091

    Article  Google Scholar 

  22. S. I. Pechenyuk, D. P. Domonov, A. A. Shimkin, et al., Russ. J. Gen. Chem. 87, 2212 (2017). https://doi.org/10.1134/S1070363217090481

    Article  CAS  Google Scholar 

  23. S. I. Pechenyuk, D. P. Domonov, and A. N. Gosteva, Ros. Khim. Zh. 62, 116 (2018). https://doi.org/10.1134/S107036322109

    Article  Google Scholar 

  24. Gmelins’ Handbuch der Anorganische Chemie: Kupfer (Chemie, Weinheim, 1961).

  25. JCPDS-ICDD card. Newtown Square (PA, USA): International Centre for Diffraction Data, 2002.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Domonov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by I. Kudryavtsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domonov, D.P., Pechenyuk, S.I. & Semushina, Y.P. Thermal Decomposition of Co–Cu Double Salicylate Complex under Argon Atmosphere Resulting in Metal–Carbon Compositions. Russ. J. Inorg. Chem. 67, 555–559 (2022). https://doi.org/10.1134/S0036023622040040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622040040

Keywords:

Navigation