Skip to main content
Log in

Enumeration of Melting Diagrams for Four-Component Systems Comprising Stoichiometric Compounds

  • PHYSICOCHEMICAL ANALYSIS OF INORGANIC SYSTEMS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The previously described algorithm for constructing isobaric–isothermal subsolidus sections of four-component systems comprising stoichiometric compounds is used as the base for developing an approach to the enumeration of melting diagrams of such the systems. The underlying idea of the approach is the placement of different types of invariant points over the tetrahedration elements of the phase diagram. Next, adjacent invariant points are connected by lines on which arrows are placed to indicate the decreasing temperature direction. This procedure is carried out within the limits imposed by the properties of the phase diagrams. Exemplary schematic melting diagrams constructed with the use of the described approach are provided. The results of the work can be used to design an optimization algorithm for an experimental study of phase diagrams, as well as to develop databases for such the diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. Kosyakov, Shestakov, Grachev, and Komarov [28] suggested, just as we suggest here, that these phases have small homogeneity areas, so they can be regarded as stoichiometric phases.

  2. The program provides imaging of the results of calculations in the form of WRL files.

  3. The temperature decreases along a monovariant line as the line thickness decreases.

  4. A diotectic point is an invariant point from which two monovariant lines originate as temperature lowers; a tritectic point is an invariant point from which three monovariant lines originate as temperature lowers.

REFERENCES

  1. Y. Liu, Therm. Acta 555, 53 (2013). https://doi.org/10.1016/j.tca.2012.12.022

    Article  CAS  Google Scholar 

  2. V. I. Kosyakov, V. A. Shestakov, and E. V. Grachev, Russ. J. Inorg. Chem. 55, 611 (2010). https://doi.org/10.1134/S0036023610040194

    Article  CAS  Google Scholar 

  3. P. P. Fedorov, Russ. J. Inorg. Chem. 50, 1933 (2005).

    Google Scholar 

  4. V. I. Kosyakov, Dokl. Chem. 374, 199 (2000).

    Google Scholar 

  5. V. Lutsyk and V. Vorob’eva, Proceedings of the International Conference on Phase Diagram Calculations and Computational Thermochemistry Calphad XXXVIII, Prague, 2009, p. 66.

  6. L. A. Serafimov, Russ. J. Phys. Chem. A 76, 1211 (2002).

    Google Scholar 

  7. N. A. Charykov, A. V. Rumyantsev, and M. V. Charykova, Russ. J. Phys. Chem. A 72, 1761 (1998).

    Google Scholar 

  8. K. A. Khaldoyanidi, J. Struct. Chem. 44, 116 (2003).

    Article  CAS  Google Scholar 

  9. L. S. Palatnik, Russ. J. Phys. Chem. A 65, 3208 (1991).

    CAS  Google Scholar 

  10. V. I. Kosyakov, Russ. J. Phys. Chem. A 93, 1635 (2019). https://doi.org/10.1134/S0036024419090085

    Article  CAS  Google Scholar 

  11. V. I. Lutsyk and V. P. Vorob’eva, Russ. J. Inorg. Chem. 59, 956 (2014). https://doi.org/10.7868/S0044457X14090128

    Article  CAS  Google Scholar 

  12. A. V. Frolkova, T. E. Ososkova, and A. K. Frolkova, Theor. Found. Chem. Eng. 54, 407 (2020). https://doi.org/10.1134/S0040579520020049

  13. V. I. Lutsyk and V. P. Vorob’eva, Russ. J. Inorg. Chem. 59, 1123 (2014). https://doi.org/10.1134/S0036023614100106

    Article  CAS  Google Scholar 

  14. V. I. Kosyakov, N. A. Pylneva, Z. G. Bazarova, and A. M. Yurkin, Mater. Res. Bull. 36, 573 (2001). https://doi.org/10.1016/S0025-5408(01)00519-0

    Article  CAS  Google Scholar 

  15. A. M. Gasanaliev, B. Y. Gamataeva, and D. E. Bekova, Russ. J. Inorg. Chem. 50, 1080 (2005).

    Google Scholar 

  16. V. I. Kosyakov, Russ. J. Inorg. Chem. 53, 946 (2008). https://doi.org/10.1134/S0036023608060223

    Article  Google Scholar 

  17. P. A. Akhmedova, B. Yu. Gamataeva, and A. M. Gasanaliev, Russ. J. Inorg. Chem. 54, 779 (2009). https://doi.org/10.1134/S0036023609050179

    Article  Google Scholar 

  18. Zh. A. Kochkarov and I. V. Shogenov, Russ. J. Inorg. Chem. 53, 1517 (2008). https://doi.org/10.1134/S0036023608090283

    Article  Google Scholar 

  19. D. G. Cherkasov, V. F. Kurskii, and K. K. Il’in, Russ. J. Inorg. Chem. 53, 139 (2008). https://doi.org/10.1134/S0036023608010208

    Article  Google Scholar 

  20. D. G. Cherkasov, V. F. Kurskii, S. I. Sinegubova, and K. K. Il’in, Russ. J. Inorg. Chem. 54, 969 (2009). https://doi.org/10.1134/S0036023609060217

    Article  Google Scholar 

  21. D. G. Cherkasov, M. P. Smotrov, and K. K. Il’in, Russ. J. Phys. Chem. A 84, 922 (2010). https://doi.org/10.1134/S0036024410060063

    Article  CAS  Google Scholar 

  22. D. G. Cherkasov, K. K. Il’in, and V. F. Kurskii, Russ. J. Inorg. Chem. 56, 787 (2011). https://doi.org/10.1134/S0036023611050068

    Article  CAS  Google Scholar 

  23. V. F. Kurskii, D. G. Cherkasov, and K. K. Il’in, Izv. Sarat. Univ. Ser. Khim. Biol. Ekol. 6, 9 (2006).

    Google Scholar 

  24. A. Smirnov, A. Samarov, and M. Toikka, J. Chem. Eng. Data 66, 1466 (2021). https://doi.org/10.1021/acs.jced.0c01066

    Article  CAS  Google Scholar 

  25. A. F. Martínez, C. A. Sánchez, A. Orjuela, and G. Rodríguez, Fluid Phase Equilib. 516, 112612 (2020). https://doi.org/10.1016/j.fluid.2020.112612

    Article  CAS  Google Scholar 

  26. A. V. Basko, K. V. Pochivalov, A. V. Bazanov, et al., Thermochim. Acta. 684, 178499 (2020). https://doi.org/10.1016/j.tca.2019.178499

    Article  CAS  Google Scholar 

  27. V. L. Solozhenko and V. Z. Turkevich, J. Phys. Chem. 122, 8505 (2018). https://doi.org/10.1021/acs.jpcc.8b00102

    Article  CAS  Google Scholar 

  28. V. I. Kosyakov, V. A. Shestakov, E. V. Grachev, and V. Yu. Komarov, Russ. J. Inorg. Chem. 61, 1274 (2016). https://doi.org/10.1134/S0036023616100119

    Article  CAS  Google Scholar 

  29. V. A. Shestakov, E. V. Grachev, and V. I. Kosyakov, Russ. J. Phys. Chem. A 94, 1083 (2020). https://doi.org/10.1134/S0036024420060205

    Article  CAS  Google Scholar 

  30. V. A. Shestakov and V. I. Kosyakov, Russ. J. Inorg. Chem. 66, 401 (2021). https://doi.org/10.1134/S0036023621030165

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to V.I. Kosyakov for formulating the task and for valuable comments.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project No. 121031700314-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Shestakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shestakov, V.A., Grachev, E.V. Enumeration of Melting Diagrams for Four-Component Systems Comprising Stoichiometric Compounds. Russ. J. Inorg. Chem. 67, 488–491 (2022). https://doi.org/10.1134/S0036023622040179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622040179

Keywords:

Navigation