Skip to main content
Log in

Kinetic Investigation of Initial Oxidative Dissolution of Pyrite in Alkaline Media (pH 9–12) and Influence of Ca and Mg: A Fundamental Study for Pyrite Depression in Froth Flotation

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Froth flotation is a common mineral processing technique that is used to remove low economic gangue minerals, such as pyrite, from ore. The main hydrophilization mechanism on the pyrite surface is explained by the formation of hydrophilic iron (Fe) hydroxide and its complexation with calcium (Ca) and magnesium (Mg) ions; however, few quantitative results are available to determine the best physico-chemical condition to depress pyrite floatability. Fe-hydroxide formation, i.e., oxidative dissolution on a pyrite surface, is a kinetically control reaction; thus, this study investigated the short-term pyrite oxidation rate (~ 360 min) and the influence of the copresence of Ca and Mg under alkaline pH conditions (9, 10.5, and 12) as a fundamental study to establish optimal flotation and/or pre-treatment conditions for pyrite depression. The oxidative dissolution rates of pyrite increased after 120–150 min of reaction compared with the first reaction time: the rate constant (log k) increased from − 10.08 to − 9.5 in the absence of Ca and Mg. X-ray photoelectron spectroscopy analysis results showed that the formation of Fe1−xS2 became the dominant reaction in the first reaction stage; thereafter, S–S bond cleavage in the second reaction stage resulted in the acceleration of pyrite decomposition. Smaller rate constants resulted for the Ca and Mg solutions because of the formation of Ca and Mg hydroxides under alkaline conditions. However, this decrease in oxidation rate could influence the pyrite surface hydrophilization less, and hydrophilization has become the main reason for pyrite depression enhancement.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dong L, Jiao F, Qin W, Liu W (2019) Selective flotation of scheelite from calcite using xanthan gum as depressant. Miner Eng 138:14–23. https://doi.org/10.1016/j.mineng.2019.04.030

    Article  CAS  Google Scholar 

  2. Chen Y, Zhang G, Shi Q, Yang S, Liua D, Wanga M (2020) Utilization of trisodium phosphate to eliminate the adverse effect of Mg2+ on the flotation of pyrite. Miner Eng 150:106281. https://doi.org/10.1016/j.mineng.2020.106281

    Article  CAS  Google Scholar 

  3. Napier-Munn T, Wills BA (2006) Wills’ mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery. Elsevier, Amsterdam

    Google Scholar 

  4. Mu Y, Peng Y, Lauten AR (2016) The depression of pyrite in selective flotation by different reagent systems—a literature review. Miner Eng 96–97:143–156. https://doi.org/10.1016/j.mineng.2016.06.018

    Article  CAS  Google Scholar 

  5. Rao SR, Leja J (2004) Surface chemistry of froth flotation. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  6. Li Y, Chen J, Kang D, Guo J (2012) Depression of pyrite in alkaline medium and its subsequent activation by copper. Miner Eng 26:64–69. https://doi.org/10.1016/j.mineng.2011.11.001

    Article  CAS  Google Scholar 

  7. Xian YJ, Wang YJ, Wen SM, Nie Q, Deng JS (2015) Floatability and oxidation of pyrite with different spatial symmetry. Miner Eng 72:94–100. https://doi.org/10.1016/j.mineng.2017.10.016

    Article  CAS  Google Scholar 

  8. Jacques S, Greet CJ, Bastin D (2016) Oxidative weathering of a copper sulphide ore and its influence on pulp chemistry and flotation. Miner Eng 99:52–59. https://doi.org/10.1016/j.mineng.2016.09.023

    Article  CAS  Google Scholar 

  9. Hu YH, Zhang SL, Qiu GZ, Miller JD (2000) Surface chemistry of activation of lime-depressed pyrite flotation. Trans Nonferr Met Soc China 10:798–803

    CAS  Google Scholar 

  10. Yin W, Xue J, Li D, Sun Q, Yao J, Huang S (2019) Flotation of heavily oxidized pyrite in the presence of fine digenite particles. Miner Eng 115:142–149. https://doi.org/10.1016/j.mineng.2017.10.016

    Article  CAS  Google Scholar 

  11. Hirajima T, Suyantara GPW, Ichikawa O, Elmahdy AM, Miki H, Sasaki K (2016) Effect of Mg2+ and Ca2+ as divalent seawater cations on the floatability of molybdenite and chalcopyrite. Miner Eng 96:83–93. https://doi.org/10.1016/j.mineng.2016.06.023

    Article  CAS  Google Scholar 

  12. Xue J, Fuchida S, Ishida S, Tokoro C (2022) Insight on exogenous calcium/magnesium in weakening pyrite floatability with prolonged pre-oxidation: localized and concomitant secondary minerals and their depression characteristics. Minerals 12:115. https://doi.org/10.3390/min12020115

    Article  CAS  Google Scholar 

  13. Singer PC, Stumm W (1970) Acidic mine drainage: the rate-determining step. Science 167:1121–1123. https://doi.org/10.1126/science.167.3921.1121

    Article  CAS  Google Scholar 

  14. Holmes PR, Crundwell FK (2000) The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: an electrochemical study. Geochim Cosmochim Acta 64:263–274. https://doi.org/10.1016/S0016-7037(99)00296-3

    Article  CAS  Google Scholar 

  15. Eggleston CM, Ehrhardt JJ, Stumm W (1996) Surface structural controls on pyrite oxidation kinetics: an XPS-UPS, STM, and modeling study. Am Mineral 81:1036–1056. https://doi.org/10.2138/am-1996-9-1002

    Article  CAS  Google Scholar 

  16. Tichomirowa M, Junghans M (2009) Oxygen isotope evidence for sorption of molecular oxygen to pyrite surface sites and incorporation into sulfate in oxidation experiments. Appl Geochem 24:2072–2092. https://doi.org/10.1016/j.apgeochem.2009.08.002

    Article  CAS  Google Scholar 

  17. Santos CDE, Silva CMJ, Duarte AH (2016) Pyrite oxidation mechanism by oxygen in aqueous medium. J Phys Chem C 120:2760–2768. https://doi.org/10.1021/acs.jpcc.5b10949

    Article  CAS  Google Scholar 

  18. Chandra AP, Gerson AR (2010) The mechanisms of pyrite oxidation and leaching: a fundamental perspective. Surf Sci Rep 65:293–315. https://doi.org/10.1016/j.surfrep.2010.08.003

    Article  CAS  Google Scholar 

  19. Williamson MA, Rimstidt JD (1994) The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation. Geochim Cosmochim Acta 58:5443–5454. https://doi.org/10.1016/0016-7037(94)90241-0

    Article  CAS  Google Scholar 

  20. Ahlberg E, Forssberg KSE, Wang X (1990) The surface oxidation of pyrite in alkaline-solution. J Appl Electrochem 20:1033–1039. https://doi.org/10.1007/BF01019585

    Article  CAS  Google Scholar 

  21. Bonnissel-Gissinger P, Alnot M, Ehrhardt JJ, Behra P (1998) Surface oxidation of pyrite as a function of pH. Environ Sci Technol 32:2839–2845. https://doi.org/10.1021/es980213c

    Article  CAS  Google Scholar 

  22. Percak-Dennett E, He S, Converse B, Konishi H, Xu H, Corcoran A, Noguera D, Chan C, Bhattacharyya A, Borch T, Boyd E, Roden EE (2017) Microbial acceleration of aerobic pyrite oxidation at circumneutral pH. Geobiology 15:690–703. https://doi.org/10.1111/gbi.12241

    Article  CAS  Google Scholar 

  23. Moses OC, Herman SJ (1991) Pyrite oxidation at circumneutral pH. Geochim Cosmochim Acta 55:471–482. https://doi.org/10.1016/0016-7037(91)90005-P

    Article  CAS  Google Scholar 

  24. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2) a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Report. USGS

  25. Moses CO, Nordstrom DK, Herman JS, Mills AL (1987) Aqueous pyrite oxidation by dissolved-oxygen and by ferric iron. Geochim Cosmochim Acta 51:1561–1571. https://doi.org/10.1016/0016-7037(87)90337-1

    Article  CAS  Google Scholar 

  26. Dimitrijevic M, Antonijevic MM, Dimitrijevic V (1999) Investigation of the kinetics of pyrite oxidation by hydrogen peroxide in hydrochloric acid solutions. Miner Eng 12:165–174. https://doi.org/10.1016/S0892-6875(98)00129-0

    Article  CAS  Google Scholar 

  27. Vandeginste V, Siska A, Belshaw G, Kilpatrick A (2021) Effect of salinity on the kinetics of pyrite dissolution in oxygenated fluids at 60 °C and implications for hydraulic fracturing. J Nat Gas Sci Eng 86:103722. https://doi.org/10.1016/j.jngse.2020.103722

    Article  CAS  Google Scholar 

  28. Ruan R, Zhou E, Liu X, Wu B, Zhou G, Wen J (2010) Comparison on the leaching kinetics of chalcocite and pyrite with or without bacteria. Rare Met 29:552–556. https://doi.org/10.1007/s12598-010-0167-3

    Article  CAS  Google Scholar 

  29. Das S, Hendry JM, Essilfie-Dughan J (2011) Transformation of two-line ferrihydrite to goethite and hematite as a function of pH and temperature. Environ Sci Technol 45:268–275. https://doi.org/10.1021/es101903y

    Article  CAS  Google Scholar 

  30. Karthe S, Szargan R, Suoninen E (1993) Oxidation of pyrite surfaces—a photoelectron spectroscopic study. Appl Surf Sci 72:157–170. https://doi.org/10.1016/0169-4332(93)90007-X

    Article  CAS  Google Scholar 

  31. Young RE (2018) Crystal growth and surface modification of pyrite for use as a photovoltaics material. PhD Thesis, Portland State University

  32. Bai S, Yu P, Li C, Wen S, Ding Z (2019) Depression of pyrite in a low-alkaline medium with added calcium hypochlorite: experiment, visual MINTEQ models, XPS, and ToF–SIMS studies. Miner Eng 141:105853. https://doi.org/10.1016/j.mineng.2019.105853

    Article  CAS  Google Scholar 

  33. O’Melia CR, Tiller CL (1993) Physicochemical aggregation and deposition in aquatic environments. In: Buffle J, van Leeuwen HP (eds) Environmental particles, vol 2. Lewis, Chelsea

    Google Scholar 

  34. Hirajima T, Suyantara PWG, Ichikawa O, Elmahdy MA, Miki H, Sasaki K (2016) Effect of Mg2+ and Ca2+ as divalent seawater cations on the floatability of molybdenite and chalcopyrite. Miner Eng 96–97:83–93. https://doi.org/10.1016/j.mineng.2016.06.023

    Article  CAS  Google Scholar 

  35. Lockwood PGA, Peakall J, Warren JN, Randall G, Barnes M, Harbottle D, Hunter NT (2021) Structure and sedimentation characterisation of sheared Mg(OH)2 suspensions flocculated with anionic polymers. Chem Eng Sci 231:116274. https://doi.org/10.1016/j.ces.2020.116274

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. S. Samitsu of the National Institute for Materials Science (NIMS) for performing the surface area analysis. Part of this work was performed at the Waseda Research Institute for Science and Research Organization for Open Innovation Strategy, Waseda University. We thank Kagami Memorial Research Institute for Materials Science and Technology, Waseda University for the XPS analysis. We thank Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SF: Conceptualization, Investigation, Data curation, Writing—original draft. JX: Methodology, Investigation, Data curation. SI: Methodology. CT: Supervision, Conceptualization.

Corresponding author

Correspondence to Chiharu Tokoro.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

The contributing editor for this article was Grace Ofori-Sarpong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 237 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuchida, S., Xue, J., Ishida, S. et al. Kinetic Investigation of Initial Oxidative Dissolution of Pyrite in Alkaline Media (pH 9–12) and Influence of Ca and Mg: A Fundamental Study for Pyrite Depression in Froth Flotation. J. Sustain. Metall. 8, 732–741 (2022). https://doi.org/10.1007/s40831-022-00521-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-022-00521-z

Keywords

Navigation