Skip to main content
Log in

Rheological and mechanical properties of aluminosilicious cementitious materials as refractory castable binders

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Metakaolin (MK) is an important refractory raw material, which has been used as a cementitious material. In order to improve the bonding strength of MK, the composite cementitious materials were prepared by MK mixed with hydratable alumina (HA) and microsilica (MS), respectively. The silane coupling agent (SCA) was introduced as a modifying agent. The rheological properties of MK-based composite cementitious slurries were investigated. The mechanical properties of corundum castables bonded with the composite cementitious materials and calcium aluminate cement (CAC) were comparatively studied. The results show that SCA improves the rheological properties of MK-based composite cementitious materials. The slurry of MK–MS mixture flows in a plastic manner, while the slurry of MK–HA mixture presents pseudoplastic flow. The addition of SCA reduces the yield stress value of the MK–HA slurry. The bonding strength of castables bonded with MK-based composite cementitious materials is lower than that of CAC bonding castables. The room temperature strength of MK–MS composite bonding castable remains the highest after being treated either at 1100 or 1550 °C, and its high temperature modulus of rupture is higher than that of CAC bonding castables with microsilica added.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W.E. Lee, W. Vieira, S. Zhang, K.G. Ahari, H. Sarpoolaky, C. Parr, Int. Mater. Rev. 46 (2001) 145–167.

    Article  Google Scholar 

  2. Z.Q. Wang, X.C. Li, B.Q. Zhu, Z.X. Lei, X.Q. Peng, Y.L. Wang, Ceram. Int. 46 (2020) 18958–18964.

    Article  Google Scholar 

  3. B. Long, B. Andreas, G.Y. Xu, Ceram. Int. 42 (2016) 11930–11940.

    Google Scholar 

  4. X.M. Ren, B.Y. Ma, S.M. Li, H.X. Li, G.Q. Liu, W.G. Yang, F. Qian, S.X. Zhao, J.K. Yu, J. Iron Steel Res. Int. 28 (2021) 38–45.

    Google Scholar 

  5. Y.W. Wei, Y.J. Dong, T. Zhang, J.F. Chen, W. Yan, J. Iron Steel Res. Int. 27 (2020) 55–61.

    Article  Google Scholar 

  6. M. Nouri-Khezrabad, M.A.L. Braulio, V.C. Pandolfelli, F. Golestani-Farda, H.R. Rezaie, Ceram. Int. 39 (2013) 3479–3497.

    Article  Google Scholar 

  7. R. Sarkar, Interceram-Refractories Manual. 69 (2020) 44–53.

    Google Scholar 

  8. M. Nouri-Khezrabad, A.P. Luz, V.R. Salvini, F. Golestani-Fard, H.R. Rezaiea, V.C. Pandolfelli, Ceram. Int. 41 (2015) 3051–3057.

    Article  Google Scholar 

  9. K. Ghanbari Ahari, J.H. Sharp, W.E. Lee, J. Eur. Ceram. Soc. 23 (2003) 3071–3077.

    Article  Google Scholar 

  10. G. Kakali, T. Perraki, S. Tsivilis, E. Badogiannis, Appl. Clay Sci. 20 (2001) 73–80.

    Article  Google Scholar 

  11. A.H. Lopez, J.L.G. Calvo, J.G. Olmo, S. Petit, M.C. Alonso, J. Am. Ceram. Soc. 91 (2008) 1258–1265.

    Google Scholar 

  12. P.P. He, B.Y. Zhang, J.X. Lu, C.S. Poon, Constr. Build. Mater. 240 (2020) 117983.

    Article  Google Scholar 

  13. M. Ramirez, J. Claramunt, H. Ventura, M. Ardanuy, Constr. Build. Mater. 251 (2020) 118919.

    Article  Google Scholar 

  14. X.W. Cheng, Q.G. Dong, Y. Ma, C. Zhang, X.S. Gao, Y.J. Yu, Z.J. Wen, C.M. Zhang, X.Y. Guo, Constr. Build. Mater. 228 (2019) 116747.

    Article  Google Scholar 

  15. J.W. Sun, Z.Q. Zhang, G.H. Hou, Powder Technol. 375 (2020) 262–270.

  16. B.Y. Ma, X.M. Ren, Z. Gao, F. Qian, Z.Y. Liu, G.Q. Liu, J.K. Yu, G.F. Fu, J. Iron Steel Res. Int. (2021) https://doi.org/10.1007/s42243-021-00653-8.

    Article  Google Scholar 

  17. F. Benali, M. Hamidouche, H. Belhouchet, N. Bouaouadja, G. Fantozzi, Ceram. Int. 42 (2016) 9703–9711.

    Article  Google Scholar 

  18. M.V. Gerotto, A.R. Studart, M.D.M. Innocentini, V.C. Pandolfelli, S. Cabo, J. Am. Ceram. Soc. Bull. 81 (2002) 40–47.

    Google Scholar 

  19. P. Izak, L. Ogłaza, W. Mozgawa, J. Mastalska-Popławska, A. Stempkowska, Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy 196 (2018) 155–159.

    Article  Google Scholar 

  20. F. Pelisser, E.L. Guerrino, M. Menger, M.D. Michel, J.A. Labrincha, Constr. Build. Mater. 49 (2013) 547–553.

    Article  Google Scholar 

  21. F. Arslana, A. Benli, M. Karatas, Constr. Build. Mater. 256 (2020) 119497.

    Article  Google Scholar 

  22. F. Andreola, E. Castellini, J.M.F. Ferreira, S. Olhero, M. Romagnoli, Appl. Clay Sci. 31 (2006) 56–64.

    Article  Google Scholar 

  23. Y.W. Li, Y.F. Zhang, J. Zheng, H.L. Guo, C.H. Yang, Z.X. Li, M.G. Lu, J. Eur. Ceram. Soc. 34 (2014) 137–146.

    Article  Google Scholar 

  24. S.I. Conceicao, J.L. Velho, J.M.F. Ferreira, Appl. Clay Sci. 23 (2003) 257–264.

    Article  Google Scholar 

  25. Q.F. Wang, G.T. Ye, C.Y. Zhang, L.L. Zhu, X.J. Song, J. Ma, J. Mater. Sci. 49 (2014) 333–3336.

    Article  Google Scholar 

  26. Q. Dong, B.S. Huang, X. Shu, Constr. Build. Mater. 48 (2013) 116–123.

    Article  Google Scholar 

  27. J.P. Ou, T.J. Liu, J.H. Li, J. Wuhan Univ. Technol. Mater. Sci. Ed. 21 (2006) No. 2, 1–5.

    Google Scholar 

  28. G.M. Wang, Y. Kong, Z.H. Shui, Mater. Struc. 48 (2015) 261–267.

    Article  Google Scholar 

  29. C.S. Zhang, X. Wang, Z.C. Hu, Q.S. Wu, H.J. Zhu, J.F. Lu, J. Build. Eng. 36 (2021) 102091.

    Article  Google Scholar 

  30. X. Wang, C.S. Zhang, Q.S. Wu, H.J. Zhu, Y. Liu, Mater. Chem. Phy. 267 (2021) 124655.

    Article  Google Scholar 

  31. Y.S. Xu, D.D.L. Chung, Cem. Concr. Res. 29 (1999) 451–453.

  32. P.I. Au, Y.K. Leong, Colloid. Surface. A Physicochem. Eng. Aspects 436 (2013) 530–541.

    Article  Google Scholar 

  33. I.P. Sfikas, E.G. Badogiannis, K.G. Trezos, Constr. Build. Mater. 64 (2014) 121–129.

  34. B. Lorentz, N. Shanahan, A. Zayed, Constr. Build. Mater. 307 (2021) 124761.

    Article  Google Scholar 

  35. E.J. Teh, Y.K. Leonga, Y. Liu, A.B. Fourie, M. Fahey, Chem. Eng. Sci. 64 (2009) 3817–3825.

  36. P. Marco, J. Labanda, J. Llorens, Powder Technol. 148 (2004) 43–47.

  37. P. Shankar, J. Teo, Y.K. Leong, A. Fourie, M. Fahey, Adv. Powder Technol. 21 (2010) 380–385.

  38. R. Kumara, B. Bhattacharjee, Cem. Concr. Res. 33 (2003) 155–164.

Download references

Acknowledgements

The present work was supported by National Natural Science Foundation of China (Grant Nos. U21A2057 and U20A20239) and College Students' Innovative Entrepreneurial Training Plan Program of Hubei Province (Grant No. 20181088100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong-feng Xia or Zhou-fu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Zf., Chen, Ch., Chi, Wh. et al. Rheological and mechanical properties of aluminosilicious cementitious materials as refractory castable binders. J. Iron Steel Res. Int. 29, 1145–1151 (2022). https://doi.org/10.1007/s42243-022-00776-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00776-6

Keywords

Navigation