Skip to main content

Advertisement

Log in

Strategies for monitoring within-field soybean yield using Sentinel-2 Vis-NIR-SWIR spectral bands and machine learning regression methods

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Soybean crop plays an important role in world food production and food security, and agricultural production should be increased accordingly to meet the global food demand. Satellite remote sensing data is considered a promising proxy for monitoring and predicting yield. This research aimed to evaluate strategies for monitoring within-field soybean yield using Sentinel-2 visible, near-infrared and shortwave infrared (Vis/NIR/SWIR) spectral bands and partial least squares regression (PLSR) and support vector regression (SVR) methods. Soybean yield maps (over 500 ha) were recorded by a combine harvester with a yield monitor in 15 fields (3 farms) in Paraná State, southern Brazil. Sentinel-2 images (spectral bands and 8 vegetation indices) across a cropping season were correlated to soybean yield. Information pooled across the cropping season presented better results compared to single images, with best performance of Vis/NIR/SWIR spectral bands under PLSR and SVR. At the grain filling stage, field-, farm- and global-based models were evaluated and presented similar trends compared to leaf-based hyperspectral reflectance collected at the Brazilian National Soybean Research Center. SVR outperformed PLSR, with a strong correlation between observed and predicted yield. For within-field soybean yield mapping, field-based SVR models (developed individually for each field) presented the highest accuracies. The results obtained demonstrate the possibility of developing within-field yield prediction models using Sentinel-2 Vis/NIR/SWIR bands through machine learning methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material (data transparency)

Data associated with this research is available with the author L.G.T.C. upon request.

Code availability

Not applicable.

References

  • Al-Gaadi, K. A., Hassaballa, A. A., Tola, E., Kayad, A. G., Madugundu, R., Alblewi, B., et al. (2016). Prediction of potato crop yield using precision agriculture techniques. PloS One, 11(9). https://doi.org/10.1371/journal.pone.0162219

  • Ali, A., Martelli, R., Lupia, F., & Barbanti, L. (2019). Assessing multiple years’ spatial variability of crop yields using satellite vegetation indices. Remote Sensing, 11(20), 2384. https://doi.org/10.3390/rs11202384

    Article  Google Scholar 

  • Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. D. M., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  • Ashourloo, D., Aghighi, H., Matkan, A. A., Mobasheri, M. R., & Rad, A. M. (2016). An investigation into machine learning regression techniques for the leaf rust disease detection using hyperspectral measurement. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(9), 4344–4351. https://doi.org/10.1109/JSTARS.2016.2575360

    Article  Google Scholar 

  • Bolton, D. K., & Friedl, M. A. (2013). Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agricultural and Forest Meteorology, 173, 74–84. https://doi.org/10.1016/j.agrformet.2013.01.007

    Article  Google Scholar 

  • Brown, J. C., Kastens, J. H., Coutinho, A. C., de Victoria, D. C., & Bishop, C. R. (2013). Classifying multiyear agricultural land use data from Mato Grosso using time-series MODIS vegetation index data. Remote Sensing of Environment, 130, 39–50. https://doi.org/10.1016/j.rse.2012.11.009

    Article  Google Scholar 

  • Carneiro, F. M., Furlani, C. E. A., Zerbato, C., de Menezes, P. C., da Silva Gírio, L. A., & de Oliveira, M. F. (2020). Comparison between vegetation indices for detecting spatial and temporal variabilities in soybean crop using canopy sensors. Precision Agriculture, 21, 979–1007. https://doi.org/10.1007/s11119-019-09704-3

    Article  Google Scholar 

  • Chen, P., & Jing, Q. (2017). A comparison of two adaptive multivariate analysis methods (PLSR and ANN) for winter wheat yield forecasting using Landsat-8 OLI images. Advances in space research, 59(4), 987–995. https://doi.org/10.1016/j.asr.2016.11.029

    Article  Google Scholar 

  • Christenson, B. S., Schapaugh Jr, W. T., An, N., Price, K. P., Prasad, V., & Fritz, A. K. (2016). Predicting soybean relative maturity and seed yield using canopy reflectance. Crop Science, 56(2), 625–643. https://doi.org/10.2135/cropsci2015.04.0237

    Article  CAS  Google Scholar 

  • CONAB (National Company of Food Supply) (2021). Brazilian Crop Assessment–Grain, 2020/2021 Crops, Sixth Inventory Survey, March/2021. Retrieved March 31, 2021, from https://www.conab.gov.br/info-agro/safras/graos

  • Crusiol, L. G. T., Carvalho, J. D. F. C., Sibaldelli, R. N. R., Neiverth, W., do Rio, A., Ferreira, L. C., et al. (2017a). NDVI variation according to the time of measurement, sampling size, positioning of sensor and water regime in different soybean cultivars. Precision Agriculture, 18(4), 470–490. https://doi.org/10.1007/s11119-016-9465-6

    Article  Google Scholar 

  • Crusiol, L. G. T., Nanni, M. R., Furlanetto, R. H., Sibaldelli, R. N. R., Cezar, E., Sun, L., et al. (2021a). Yield Prediction in Soybean Crop Grown under Different Levels of Water Availability Using Reflectance Spectroscopy and Partial Least Squares Regression. Remote Sensing, 13(5), 977. https://doi.org/10.3390/rs13050977

    Article  Google Scholar 

  • Crusiol, L. G. T., Nanni, M. R., Furlanetto, R. H., Sibaldelli, R. N. R., Cezar, E., Sun, L., et al. (2021b). Classification of Soybean Genotypes Assessed Under Different Water Availability and at Different Phenological Stages Using Leaf-Based Hyperspectral Reflectance. Remote Sensing, 13(2), 172. https://doi.org/10.3390/rs13020172

    Article  Google Scholar 

  • Crusiol, L. G. T., Neto, O. C. P., Nanni, M. R., da Silva Gualberto, A. A., Furlanetto, R. H., & da Silva Junior, C. A. (2017b). Mapeamento de áreas agrícolas na safra de verão a partir de imagens Landsat frente aos dados oficiais (Mapping of agricultural areas in the summer crop season using Landsat images against official data). Revista Agro@mbiente On-line, 10(4), 287–298. https://doi.org/10.18227/1982-8470ragro.v10i4.3098

  • Dado, W. T., Deines, J. M., Patel, R., Liang, S. Z., & Lobell, D. B. (2020). High-Resolution Soybean Yield Mapping Across the US Midwest Using Subfield Harvester Data. Remote Sensing, 12(21), 3471. https://doi.org/10.3390/rs12213471

    Article  Google Scholar 

  • Di Gennaro, S. F., Dainelli, R., Palliotti, A., Toscano, P., & Matese, A. (2019). Sentinel-2 validation for spatial variability assessment in overhead trellis system viticulture versus UAV and agronomic data. Remote Sensing, 11(21), 2573. https://doi.org/10.3390/rs11212573

    Article  Google Scholar 

  • Eberhardt, I. D. R., Schultz, B., Rizzi, R., Sanches, I. D. A., Formaggio, A. R., Atzberger, C., et al. (2016). Cloud cover assessment for operational crop monitoring systems in tropical areas. Remote Sensing, 8(3), 219. https://doi.org/10.3390/rs8030219

    Article  Google Scholar 

  • Embrapa Soja. (2013). Tecnologias de Produção de Soja—Região Central do Brasil 2014 (Technologies for Soybean Production—Central Region of Brazil 2014); Embrapa Soja. Brazil: Londrina

    Google Scholar 

  • ESA—The European Space Agency. Sentinel-2 User Guide. Retrieved March 31 (2021). from https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi

  • Esquerdo, J. C. D. M., Zullo Júnior, J., & Antunes, J. F. G. (2011). Use of NDVI/AVHRR time-series profiles for soybean crop monitoring in Brazil. International Journal of Remote Sensing, 32(13), 3711–3727. https://doi.org/10.1080/01431161003764112

    Article  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (2018). The future of food and agriculture—Alternative pathways to 2050. Summary version. Rome. 60 pp. Licence: CC BY-NC-SA 3.0 IGO. Retrieved March 31, 2021 from http://www.fao.org/3/I8429EN/i8429en.pdf. Accessed on 31 March 2021

  • Fehr, W. R., & Caviness, C. E. (1977). Stages of Soybean Development; Special Report 80; Iowa State University of Science and Technology: Ames, IA, USA

  • Gao, F., Anderson, M., Daughtry, C., & Johnson, D. (2018). Assessing the variability of corn and soybean yields in central Iowa using high spatiotemporal resolution multi-satellite imagery. Remote Sensing, 10(9), 1489. https://doi.org/10.3390/rs10091489

    Article  Google Scholar 

  • Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote sensing of Environment, 58(3), 289–298. https://doi.org/10.1016/S0034-4257(96)00072-7

    Article  Google Scholar 

  • Gitelson, A., & Merzlyak, M. N. (1994). Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. Journal of plant physiology, 143(3), 286–292. https://doi.org/10.1016/S0176-1617(11)81633-0

    Article  CAS  Google Scholar 

  • Gómez, D., Salvador, P., Sanz, J., & Casanova, J. L. (2019). Potato yield prediction using machine learning techniques and sentinel 2 data. Remote Sensing, 11(15), 1745. https://doi.org/10.3390/rs11151745

    Article  Google Scholar 

  • Guan, K., Wu, J., Kimball, J. S., Anderson, M. C., Frolking, S., Li, B., et al. (2017). The shared and unique values of optical, fluorescence, thermal and microwave satellite data for estimating large-scale crop yields. Remote Sensing of Environment, 199, 333–349. https://doi.org/10.1016/j.rse.2017.06.043

    Article  Google Scholar 

  • Gusso, A., & Ducati, J. R. (2012). Algorithm for soybean classification using medium resolution satellite images. Remote Sensing, 4(10), 3127–3142. https://doi.org/10.3390/rs4103127

    Article  Google Scholar 

  • Hardisky, M. A., Klemas, V., & Smart, M. (1983). The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of spartina alterniflora canopies. Photogrammetric Engineering and Remote Sensing, 49, 77–83

    Google Scholar 

  • Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1–2), 195–213. https://doi.org/10.1016/S0034-4257(02)00096-2

    Article  Google Scholar 

  • Hunt, M. L., Blackburn, G. A., Carrasco, L., Redhead, J. W., & Rowland, C. S. (2019). High resolution wheat yield mapping using Sentinel-2. Remote Sensing of Environment, 233, 111410. https://doi.org/10.1016/j.rse.2019.111410

    Article  Google Scholar 

  • Jiang, Z., Huete, A. R., Didan, K., & Miura, T. (2008). Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment, 112(10), 3833–3845. https://doi.org/10.1016/j.rse.2008.06.006, https://doi.org/10.1016/j.rse.2013.10.027

    Article  Google Scholar 

  • Kamir, E., Waldner, F., & Hochman, Z. (2020). Estimating wheat yields in Australia using climate records, satellite image time series and machine learning methods. ISPRS Journal of Photogrammetry and Remote Sensing, 160, 124–135. https://doi.org/10.1016/j.isprsjprs.2019.11.008

    Article  Google Scholar 

  • Kayad, A., Sozzi, M., Gatto, S., Marinello, F., & Pirotti, F. (2019). Monitoring within-field variability of corn yield using Sentinel-2 and machine learning techniques. Remote Sensing, 11(23), 2873. https://doi.org/10.3390/rs11232873

    Article  Google Scholar 

  • Kross, A., Znoj, E., Callegari, D., Kaur, G., Sunohara, M., Lapen, D. R., et al. (2020). Using Artificial Neural Networks and Remotely Sensed Data to Evaluate the Relative Importance of Variables for Prediction of Within-Field Corn and Soybean Yields. Remote Sensing, 12(14), 2230. https://doi.org/10.3390/rs12142230

    Article  Google Scholar 

  • Lamquin, N., Woolliams, E., Bruniquel, V., Gascon, F., Gorroño, J., Govaerts, Y., et al. (2019). An inter-comparison exercise of Sentinel-2 radiometric validations assessed by independent expert groups. Remote Sensing of Environment, 233, 111369

    Article  Google Scholar 

  • Leon, C. T., Shaw, D. R., Cox, M. S., Abshire, M. J., Ward, B., Wardlaw, M. C., et al. (2003). Utility of remote sensing in predicting crop and soil characteristics. Precision Agriculture, 4(4), 359–384. https://doi.org/10.1023/A:1026387830942

    Article  Google Scholar 

  • Maimaitijiang, M., Sagan, V., Sidike, P., Hartling, S., Esposito, F., & Fritschi, F. B. (2020). Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sensing of Environment, 237, 111599. https://doi.org/10.1016/j.rse.2019.111599

    Article  Google Scholar 

  • Mercante, E., Lamparelli, R. A., Uribe-opazo, M. A., & Rocha, J. V. (2010). Modelos de regressão lineares para estimativa de produtividade da soja no oeste do Paraná, utilizando dados espectrais (Linear regression models to soybean yield estimate in the west region of the State of Paraná, Brazil, using spectral data). Engenharia Agrícola, 30(3), 504–517. https://doi.org/10.1590/S0100-69162010000300014

    Article  Google Scholar 

  • Munyati, C., Balzter, H., & Economon, E. (2020). Correlating Sentinel-2 MSI-derived vegetation indices with in-situ reflectance and tissue macronutrients in savannah grass. International Journal of Remote Sensing, 41(10), 3820–3844. https://doi.org/10.1080/01431161.2019.1708505

    Article  Google Scholar 

  • QGIS (2022). QGIS Geographic Information System. QGIS Association. http://www.qgis.org

  • Rahman, M. M., Robson, A., & Bristow, M. (2018). Exploring the potential of high resolution worldview-3 Imagery for estimating yield of mango. Remote Sensing, 10(12), 1866. https://doi.org/10.3390/rs10121866

    Article  Google Scholar 

  • Robson, A., Rahman, M. M., & Muir, J. (2017). Using worldview satellite imagery to map yield in avocado (Persea americana): A case study in Bundaberg, Australia. Remote Sensing, 9(12), 1223. https://doi.org/10.3390/rs9121223

    Article  Google Scholar 

  • Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. NASA special publication, 351(1974), 309

  • Sakamoto, T. (2020). Incorporating environmental variables into a MODIS-based crop yield estimation method for United States corn and soybeans through the use of a random forest regression algorithm. ISPRS Journal of Photogrammetry and Remote Sensing, 160, 208–228. https://doi.org/10.1016/j.isprsjprs.2019.12.012

    Article  Google Scholar 

  • SEAB (Secretaria de Estado da Agricultura e do Abastecimento do Paraná—Departamento de Economia Rural) (2021). Paraná State Crop Assessment, 2020/2021. Retrieved March 31, 2021, from https://www.conab.gov.br/info-agro/safras/graos

  • Segarra, J., González-Torralba, J., Aranjuelo, Í., Araus, J. L., & Kefauver, S. C. (2020). Estimating Wheat Grain Yield Using Sentinel-2 Imagery and Exploring Topographic Features and Rainfall Effects on Wheat Performance in Navarre, Spain. Remote Sensing, 12(14), 2278. https://doi.org/10.3390/rs12142278

    Article  Google Scholar 

  • Shoko, C., & Mutanga, O. (2017). Examining the strength of the newly-launched Sentinel 2 MSI sensor in detecting and discriminating subtle differences between C3 and C4 grass species. ISPRS Journal of Photogrammetry and Remote Sensing, 129, 32–40. https://doi.org/10.1016/j.isprsjprs.2017.04.016

    Article  Google Scholar 

  • Silva Junior, C. A., da, Nanni, M. R., Teodoro, P. E., & Silva, G. F. C. (2017). Vegetation indices for discrimination of soybean areas: A New Approach. Agronomy Journal, 109(4), 1331–1343. https://doi.org/10.2134/agronj2017.01.0003

    Article  Google Scholar 

  • Silva, E. E., da, Baio, F. H. R., Teodoro, L. P. R., da Silva Junior, C. A., Borges, R. S., & Teodoro, P. E. (2020). UAV-multispectral and vegetation indices in soybean grain yield prediction based on in situ observation. Remote Sensing Applications: Society and Environment, 18, 100318. https://doi.org/10.1016/j.rsase.2020.100318

    Article  Google Scholar 

  • Souza, A. M. D., Breitkreitz, M. C., Filgueiras, P. R., Rohwedder, J. J. R., & Poppi, R. J. (2013). Experimento didático de quimiometria para calibração multivariada na determinação de paracetamol em comprimidos comerciais utilizando espectroscopia no infravermelho próximo: um tutorial, parte II (Teaching experiment of chemometrics for multivariate calibration in determination of paracetamol in commercial tablets using near-infrared spectroscopy: a tutorial, part II). Química Nova, 36(7), 1057–1065. https://doi.org/10.1590/S0100-40422013000700022

    Article  Google Scholar 

  • Suarez, L. A., Robson, A., McPhee, J., O’Halloran, J., & van Sprang, C. (2020). Accuracy of carrot yield forecasting using proximal hyperspectral and satellite multispectral data. Precision Agriculture, 21(6), 1304–1326. https://doi.org/10.1007/s11119-020-09722-6

    Article  Google Scholar 

  • Sugawara, L. M., Rudorff, B. F. T., & Adami, M. (2008). Viabilidade de uso de imagens do Landsat em mapeamento de área cultivada com soja no Estado do Paraná (Feasibility of the use of Landsat imagery to map soybean crop areas in Paraná, Brazil). Pesquisa Agropecuária Brasileira, 43(12), 1777–1783

    Article  Google Scholar 

  • Toming, K., Kutser, T., Laas, A., Sepp, M., Paavel, B., & Nõges, T. (2016). First experiences in mapping lake water quality parameters with Sentinel-2 MSI imagery. Remote Sensing, 8(8), 640. https://doi.org/10.3390/rs8080640

    Article  Google Scholar 

  • USDA (United States Department of Agriculture) (2021). World Agricultural Production. Circular Series WAP 3–21, March 2021. Retrieved March 31, 2021 from https://apps.fas.usda.gov/psdonline/circulars/production.pdf

  • Vega, A., Córdoba, M., Castro-Franco, M., & Balzarini, M. (2019). Protocol for automating error removal from yield maps. Precision Agriculture, 20(5), 1030–1044. https://doi.org/10.1007/s11119-018-09632-8

    Article  Google Scholar 

  • Wang, F. M., Huang, J. F., Tang, Y. L., & Wang, X. Z. (2007). New vegetation index and its application in estimating leaf area index of rice. Rice Science, 14(3), 195–203. https://doi.org/10.1016/S1672-6308(07)60027-4

    Article  Google Scholar 

  • Wrege, M. S., Steinmetz, S., Reiser, C. Jr., & de Almeida, I. R. (2011). Atlas Climático da Região Sul do Brasil: Estados do Paraná, Santa Catarina e Rio Grande do Sul (Climate atlas from the south region of Brazil: States of Paraná, Santa Catarina and Rio Grande do Sul); Embrapa Clima Temperado. Colombo, Brazil: Pelotas, Brazil; Embrapa Florestas

    Google Scholar 

  • Yendrek, C. R., Tomaz, T., Montes, C. M., Cao, Y., Morse, A. M., Brown, P. J., et al. (2017). High-throughput phenotyping of maize leaf physiological and biochemical traits using hyperspectral reflectance. Plant Physiology, 173(1), 614–626. https://doi.org/10.1104/pp.16.01447

    Article  CAS  PubMed  Google Scholar 

  • Zhai, Z., Martínez, J. F., Beltran, V., & Martínez, N. L. (2020). Decision support systems for agriculture 4.0: Survey and challenges. Computers and Electronics in Agriculture, 170, 105256. https://doi.org/10.1016/j.compag.2020.105256

    Article  Google Scholar 

  • Zhang, X., Zhao, J., Yang, G., Liu, J., Cao, J., Li, C., et al. (2019). Establishment of plot-yield prediction models in soybean breeding programs using UAV-based hyperspectral remote sensing. Remote Sensing, 11(23), 2752. https://doi.org/10.3390/rs11232752

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Council for Scientific and Technological Development—CNPq; Central Public-Interest Scientific Institution Basal Research Fund [Y2021GH18]; Innovation Project of Chinese Academy of Agricultural Sciences [G202120-5]; and the Talented Young Scientist Program—China Science and Technology Exchange Center [Brazil–19-004].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Sun.

Ethics declarations

Conflicts of interest/competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Material

Supplementary Material

Supplementary table Spatial and spectral characteristics of Sentinel-2 spectral bands
Supplementary figure
figure a

Average soybean spectral response at the R5 phenological stage from the Global-based models (Sentinel-2) and from Embrapa Soja (Sentinel-2-like)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crusiol, L.G., Sun, L., Sibaldelli, R.N. et al. Strategies for monitoring within-field soybean yield using Sentinel-2 Vis-NIR-SWIR spectral bands and machine learning regression methods. Precision Agric 23, 1093–1123 (2022). https://doi.org/10.1007/s11119-022-09876-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-022-09876-5

Keywords

Navigation