Skip to main content
Log in

Error estimation of a discontinuous Galerkin method for time fractional subdiffusion problems with nonsmooth data

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

This paper is devoted to the numerical analysis of a piecewise constant discontinuous Galerkin method for time fractional subdiffusion problems. The regularity of weak solution is firstly established by using variational approach and Mittag-Leffler function. Then several optimal error estimates are derived with low regularity data. Finally, numerical experiments are conducted to verify the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ciarlet, P.: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia, PA (2002)

    Book  Google Scholar 

  2. Eriksson, K., Johnson, C., Thomée, V.: Time discretization of parabolic problems by the discontinuous Galerkin method. RAIRO Modél. Math. Anal. Numér. 19(4), 611–643 (1985)

    Article  MathSciNet  Google Scholar 

  3. Ervin, V., Roop, J.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Meth. Part. D. E. 22(3), 558–576 (2006)

    Article  MathSciNet  Google Scholar 

  4. Evans, L.: Partial Differential Equations, 2nd Ed. American Mathematical Society (2010)

  5. Ford, N., Xiao, J., Yan, Y.: A finite element method for time fractional partial differential equations. Fract. Calc. Appl. Anal. 14(3), 454–474 (2018). https://doi.org/10.2478/s13540-011-0028-2

    Article  MathSciNet  MATH  Google Scholar 

  6. Gao, G., Sun, Z.: A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230(3), 586–595 (2011)

    Article  MathSciNet  Google Scholar 

  7. Gao, G., Sun, H., Sun, Z.: Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence. J. Comput. Phys. 280, 510–528 (2015)

    Article  MathSciNet  Google Scholar 

  8. Gorenflo, R., Kilbas, A., Mainardi, F. and Rogosin, S.: Mittag-Leffler Functions, Related Topics and Applications. Springer Monographs in Mathematics. Springer, Berlin (2014); 2nd Ed. (2020)

  9. Karaa, S., Mustapha, K., Pani, A.: Optimal error analysis of a FEM for fractional diffusion problems by energy arguments. J. Sci. Comput. 74(1), 519–535 (2018)

    Article  MathSciNet  Google Scholar 

  10. Ke, R., Ng, M. and Sun, H.: A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equations. J. Comput. Phys. 303(C), 203–211 (2015)

  11. Kufner, A., Persson, L. and Samko, N.: Weighted Inequalities of Hardy Type. World Scientific Publishing Company (2017)

  12. Langlands, T., Henry, B.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205(2), 719–736 (2005)

    Article  MathSciNet  Google Scholar 

  13. Li, B., Luo, H., Xie, X.: A space-time finite element method for fractional wave problems. Numer. Algor. 85(3), 1095–1121 (2020)

    Article  MathSciNet  Google Scholar 

  14. Li, B., Luo, H., Xie, X.: Analysis of a time-stepping scheme for time fractional diffusion problems with nonsmooth data. SIAM J. Numer. Anal. 57(2), 779–798 (2019)

    Article  MathSciNet  Google Scholar 

  15. Li, B., Wang, T., Xie, X.: Analysis of the L1 scheme for fractional wave equations with nonsmooth data. Comput. Math. Appl. 90, 1–12 (2021)

    Article  MathSciNet  Google Scholar 

  16. Li, B., Wang, T., Xie, X.: Numerical analysis of a semilinear fractional diffusion equation. Comput. Math. Appl. 80, 2115–2134 (2020)

    Article  MathSciNet  Google Scholar 

  17. Li, B., Wang, T., Xie, X.: Numerical analysis of two Galerkin discretizations with graded temporal grids for fractional evolution equations. J. Sci. Comput. 85(3), 85–59 (2020)

    Article  MathSciNet  Google Scholar 

  18. Li, B., Xie, X.: Regularity of solutions to time fractional diffusion equations. Discrete Contin. Dyn. Syst. -B. 24, 3195–3210 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47(3), 2108–2131 (2009)

    Article  MathSciNet  Google Scholar 

  20. Li, Z., Yan, Y.: Error estimates of high-order numerical methods for solving time fractional partial differential equations. Fract. Calc. Appl. Anal. 21(3), 746–774 (2018). https://doi.org/10.1515/fca-2018-0039

    Article  MathSciNet  MATH  Google Scholar 

  21. Lions, J., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications, vol. 1. Springer, Berlin (1972)

    Book  Google Scholar 

  22. Luo, H., Li, B., Xie, X.: Convergence analysis of a Petrov-Galerkin method for fractional wave problems with nonsmooth data. J. Sci. Comput. 80(2), 957–992 (2019)

    Article  MathSciNet  Google Scholar 

  23. McLean, W.: Regularity of solutions to a time-fractional diffusion equation. ANZIAM J. 52(2), 123–138 (2010)

    Article  MathSciNet  Google Scholar 

  24. McLean, W., Mustapha, K.: Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation. Numer. Algor. 52(1), 69–88 (2009)

    Article  MathSciNet  Google Scholar 

  25. McLean, W., Mustapha, K.: Time-stepping error bounds for fractional diffusion problems with non-smooth initial data. J. Comput. Phys. 293(C), 201–217 (2015)

  26. McLean, W., Thomée, V.: Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional order evolution. IMA J. Numer. Anal. 30, 208–230 (2010)

    Article  MathSciNet  Google Scholar 

  27. McLean, W., Thomée, V.: Numerical solution via Laplace transforms of a fractional order evolution equation. J. Integral Equ. Appl. 22(1), 57–94 (2010)

    Article  MathSciNet  Google Scholar 

  28. Mohebbi, A., Abbaszadeh, M., Dehghan, M.: A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term. J. Comput. Phys. 240(1), 36–48 (2013)

    Article  MathSciNet  Google Scholar 

  29. Mustapha, K.: Time-stepping discontinuous Galerkin methods for fractional diffusion problems. Numer. Math. 130(3), 497–516 (2015)

    Article  MathSciNet  Google Scholar 

  30. Mustapha, K., Abdallah, B., Furati, K.: A discontinuous Petrov-Galerkin method for time-fractional diffusion equations. SIAM J. Numer. Anal. 52(5), 2512–2529 (2014)

    Article  MathSciNet  Google Scholar 

  31. Mustapha, K., McLean, W.: Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation. Numer. Algor. 56(2), 159–184 (2011)

    Article  MathSciNet  Google Scholar 

  32. Mustapha, K., McLean, W.: Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51(1), 491–515 (2013)

    Article  MathSciNet  Google Scholar 

  33. Mustapha, K., McLean, W.: Uniform convergence for a discontinuous Galerkin, time-stepping method applied to a fractional diffusion equation. IMA J. Numer. Anal. 32(3), 906–925 (2012)

    Article  MathSciNet  Google Scholar 

  34. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)

    Article  MathSciNet  Google Scholar 

  35. Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Switzerland-USA etc (1993)

    MATH  Google Scholar 

  36. Schötzau, D., Schwab, C.: Time discretization of parabolic problems by the \(hp\)-version of the discontinuous Galerkin finite element method. SIAM J. Numer. Anal. 38(3), 837–875 (2000)

    Article  MathSciNet  Google Scholar 

  37. Stynes, M.: Too much regularity may force too much uniqueness. Fract. Calc. Appl. Anal. 19(6), 1554–1562 (2016). https://doi.org/10.1515/fca-2016-0080

    Article  MathSciNet  MATH  Google Scholar 

  38. Stynes, M., O’Riordan, E., Gracia, J.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)

    Article  MathSciNet  Google Scholar 

  39. Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Springer, Berlin (2007)

    MATH  Google Scholar 

  40. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006)

    MATH  Google Scholar 

  41. Wang, Y., Yan, Y., Yang, Y.: Two high-order time discretization schemes for subdiffusion problems with nonsmooth data. Fract. Calc. Appl. Anal. 23(5), 1349–1380 (2020). https://doi.org/10.1515/fca-2020-0067

    Article  MathSciNet  MATH  Google Scholar 

  42. Yan, Y., Khan, M., Ford, N.: An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data. SIAM J. Numer. Anal. 56(1), 210–227 (2018)

    Article  MathSciNet  Google Scholar 

  43. Yang, Y., Yan, Y., Ford, N.: Some time stepping methods for fractional diffusion problems with nonsmooth data. Comput. Methods Appl. Math. 18(1), 129–146 (2018)

    Article  MathSciNet  Google Scholar 

  44. Yuste, S.: Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 216, 264–274 (2006)

    Article  MathSciNet  Google Scholar 

  45. Yuste, S., Acedo, L.: An explicit finite difference method and a new von-Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42(5), 1862–1874 (2005)

    Article  MathSciNet  Google Scholar 

  46. Zhuang, P., Liu, F., Anh, V., Turner, I.: New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 46(2), 1079–1095 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (11771312). The authors would like to thank the Editor-in-Chief and the two anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Some properties of fractional calculus operators

Appendix A. Some properties of fractional calculus operators

Lemma 10

([35]) If \( 0<\alpha , \beta < \infty \), then

$$\begin{aligned} {{\,\mathrm{I}\,}}_{0+}^\beta {{\,\mathrm{I}\,}}_{0+}^\alpha v = {{\,\mathrm{I}\,}}_{0+}^{\beta +\alpha }v, \quad {{\,\mathrm{I}\,}}_{1-}^\beta {{\,\mathrm{I}\,}}_{1-}^\alpha v = {{\,\mathrm{I}\,}}_{1-}^{\beta +\alpha }v, \end{aligned}$$

for all \(v\in L^1(0,1)\), and if \( 0< \alpha< \beta < \infty \), then

$$\begin{aligned} {{\,\mathrm{D}\,}}_{0+}^\beta {{\,\mathrm{I}\,}}_{0+}^\alpha v = {{\,\mathrm{D}\,}}_{0+}^{\beta -\alpha }v, \quad {{\,\mathrm{D}\,}}_{1-}^\beta {{\,\mathrm{I}\,}}_{1-}^\alpha v = {{\,\mathrm{D}\,}}_{1-}^{\beta -\alpha }v, \end{aligned}$$

for all \(v\in L^1(0,1)\). Moreover, for all \( v, w \in L^2(0,1) \),

$$\begin{aligned} \left\langle {{{\,\mathrm{I}\,}}_{0+}^\beta v,w} \right\rangle _{(0,1)} = \left\langle {v, {{\,\mathrm{I}\,}}_{1-}^\beta w} \right\rangle _{(0,1)}. \end{aligned}$$

Lemma 11

([3]) If \( 0< \gamma < 1/2 \) and \( v,w \in H^{\gamma }(0,T) \), then

$$\begin{aligned}&\left\langle {{{\,\mathrm{D}\,}}_{0+}^\gamma v, {{\,\mathrm{D}\,}}_{T-}^\gamma v} \right\rangle _{(0,T)} =\cos \gamma \pi \left|{v} \right|_{H^{\gamma }(0,T)}^2,\\&\left\langle {{{\,\mathrm{D}\,}}_{0+}^\gamma v, {{\,\mathrm{D}\,}}_{T-}^\gamma w} \right\rangle _{(0,T)} = \left\langle {{{\,\mathrm{D}\,}}_{0+}^{2\gamma } v, w} \right\rangle _{H^\gamma (0,T)} = \left\langle {{{\,\mathrm{D}\,}}_{T-}^{2\gamma } w, v} \right\rangle _{H^\gamma (0,T)},\\&\cos \gamma \pi \left\Vert {{{\,\mathrm{I}\,}}_{0+}^\gamma v} \right\Vert _{L^2(0,T)}^2 \leqslant \left\langle {{{\,\mathrm{I}\,}}_{0+}^\gamma v, {{\,\mathrm{I}\,}}_{T-}^\gamma v} \right\rangle _{(0,T)} \leqslant \sec \gamma \pi \left\Vert {{{\,\mathrm{I}\,}}_{0+}^\gamma v} \right\Vert _{L^2(0,T)}^2,\\&\cos \gamma \pi \left\Vert {{{\,\mathrm{D}\,}}_{0+}^\gamma v} \right\Vert _{L^2(0,T)}^2\leqslant \left\langle {{{\,\mathrm{D}\,}}_{0+}^\gamma v, {{\,\mathrm{D}\,}}_{T-}^\gamma v} \right\rangle _{(0,T)} \leqslant \sec \gamma \pi \left\Vert {{{\,\mathrm{D}\,}}_{0+}^\gamma v} \right\Vert _{L^2(0,T)}^2. \end{aligned}$$

Lemma 12

([22]) If \( v \in {}_0H^\beta (0,1;\dot{H}^r(\varOmega )) \cap {}_0H^\gamma (0,1;\dot{H}^s(\varOmega )) \) with \( \gamma ,\beta \geqslant 0\) and \( s,r\in {\mathbb {R}}\), then for all \( 0< \theta < 1 \),

$$\begin{aligned} \begin{aligned} {}&\left\Vert {v} \right\Vert _{ {}_0H^{\theta \beta + (1-\theta ) \gamma } (0,1;\dot{H}^{\theta r + (1-\theta )s}(\varOmega )) } \\ \leqslant {}&C_{\beta ,\gamma ,\theta } \left( \left\Vert {v} \right\Vert _{{}_0H^\beta (0,1;\dot{H}^r(\varOmega ))} + \left\Vert {v} \right\Vert _{{}_0H^\gamma (0,1;\dot{H}^s(\varOmega ))} \right) . \end{aligned} \end{aligned}$$

Similarly, if \( v \in {}^0\!H^\beta (0,1;\dot{H}^r(\varOmega )) \cap {}^0\!H^\gamma (0,1;\dot{H}^s(\varOmega )) \) with \( \gamma ,\beta \geqslant 0\) and \( s,r\in {\mathbb {R}}\), then for all \( 0< \theta < 1 \),

$$\begin{aligned} \begin{aligned} {}&\left\Vert {v} \right\Vert _{ {}^0\!H^{\theta \beta + (1-\theta ) \gamma } (0,1;\dot{H}^{\theta r + (1-\theta )s}(\varOmega )) } \\ \leqslant {}&C_{\beta ,\gamma ,\theta } \left( \left\Vert {v} \right\Vert _{{}^0\!H^\beta (0,1;\dot{H}^r(\varOmega ))} + \left\Vert {v} \right\Vert _{{}^0\!H^\gamma (0,1;\dot{H}^s(\varOmega ))} \right) . \end{aligned} \end{aligned}$$

Lemma 13

([22]) If \(\beta \geqslant \gamma >0\), then

$$\begin{aligned} \left\Vert {{{\,\mathrm{D}\,}}_{T-}^{\gamma } v} \right\Vert _{{}^0\!H^{\beta -\gamma }(0,T)} \leqslant {}&C_{1}\left\Vert {v} \right\Vert _{{}^0\!H^\beta (0,T)}\quad \forall \,v \in {}^0\!H^\beta (0,T),\\ \left\Vert {{{\,\mathrm{D}\,}}_{0+}^{\gamma } v} \right\Vert _{{}_0H^{\beta -\gamma }(0,T)} \leqslant {}&C_{2} \left\Vert {v} \right\Vert _{{}_0H^\beta (0,T)} \quad \forall \,v \in {}_0H^\beta (0,T), \end{aligned}$$

where \(C_1\) and \(C_2\) depend only on \(\gamma \) and \(\beta \).

Lemma 14

([22]) If \(\beta ,\gamma \geqslant 0\), then

$$\begin{aligned} C_{1}\left\Vert {v} \right\Vert _{{}^0\!H^\beta (0,T)} \leqslant \left\Vert {{{\,\mathrm{I}\,}}_{T-}^{\gamma } v} \right\Vert _{{}^0\!H^{\beta +\gamma }(0,T)} \leqslant {}&C_{2}\left\Vert {v} \right\Vert _{{}^0\!H^\beta (0,T)} \quad \forall \,v \in {}_0H^\beta (0,T),\\ C_{3}\left\Vert {v} \right\Vert _{{}_0H^\beta (0,T)} \leqslant \left\Vert {{{\,\mathrm{I}\,}}_{0+}^{\gamma } v} \right\Vert _{{}_0H^{\beta +\gamma }(0,T)} \leqslant {}&C_{4}\left\Vert {v} \right\Vert _{{}_0H^\beta (0,T)} \quad \forall \,v \in {}_0H^\beta (0,T). \end{aligned}$$

where \(C_1,\,C_2,\,C_3\) and \(C_4\) depend only on \(\gamma \) and \(\beta \).

Lemma 15

([22]) If \(0< \gamma <1/2\), then for all \(v \in {}_0H^1(0,1)\),

$$\begin{aligned} \left\Vert {v} \right\Vert _{C[0,1]} \leqslant C_{\gamma } \left\Vert {v} \right\Vert _{{}_0H^1(0,1)}^{(1/2-\gamma )/(1-\gamma )} \left\Vert {v} \right\Vert _{{}_0H^\gamma (0,1)}^{1/(2-2\gamma )}. \end{aligned}$$

Moreover, if \(v\in {}_0H^{\gamma }(0,1)\) with \(1/2<\gamma \leqslant 1\), then for all \( 0<\epsilon \leqslant 1 \),

$$\begin{aligned} \left\Vert {v} \right\Vert _{C[0,1]}\leqslant \frac{C_{\gamma }}{\sqrt{\epsilon }} \left\Vert {v} \right\Vert _{{}_0H^{1/2}(0,1)}^{1-\epsilon } \left\Vert {v} \right\Vert _{{}_0H^{\gamma }(0,1)}^{\epsilon }. \end{aligned}$$

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Luo, H. & Xie, X. Error estimation of a discontinuous Galerkin method for time fractional subdiffusion problems with nonsmooth data. Fract Calc Appl Anal 25, 747–782 (2022). https://doi.org/10.1007/s13540-022-00023-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13540-022-00023-5

Keywords

Mathematics Subject Classification

Navigation