Skip to main content
Log in

Response of benthic dinoflagellates Amphidinium carterae and Bysmatrum gregarium to salinity changes and prolonged darkness: elucidation through laboratory experiments

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

This study elucidates the responses of bloom-forming benthic dinoflagellates, Amphidinium carterae and Bysmatrum gregarium (formerly known as B. caponii) to salinity changes and prolonged darkness. Both dinoflagellates are known to inhabit rock pools that experiences significant variations in environmental conditions. In both dinoflagellates, salinity changes did not trigger cyst formation but morphological responses were different under prolonged darkness. B. gregarium underwent encystment while A. carterae showed cell shrinkage and flagella movement (up to 9 days) without cell division. This study documents cyst formation in B. gregarium for the first time. However, both dinoflagellates showed reduced growth and photosynthetic efficiency under lower salinity (< 5) and prolonged darkness. Interestingly, both dinoflagellates did not show a maximum photosynthetic efficiency of 0.65 under optimal growth conditions which could be due to the prevalence of carotenoid-chlorophyll protein complex and diatoxanthin (fluorescence quencher). This study proposes that seasonal rainfall (e.g., Southwest monsoon along the Indian coast) can control the proliferation of both dinoflagellates in rock pools (i.e., just before the onset of monsoonal rainfall) as it hampers cell growth, inhibits photosynthesis, and does not induce cyst formation as adaptive survival strategies. Further findings on their dark survival for several days will have implications in the studies related to the transportation to different locations through the ship’s ballast water discharge or to deeper sediments in the intertidal regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data concerned to the study are included in this manuscript.

References

  • Anglès S, Reñé A, Garcés E et al (2017) Morphological and molecular characterization of Bysmatrum subsalsum (Dinophyceae) from the western Mediterranean Sea reveals the existence of cryptic species. J Phycol 53:833–847

    Article  PubMed  Google Scholar 

  • Aquino-Cruz A, Okolodkov YB (2016) Impact of increasing water temperature on growth, photosynthetic efficiency, nutrient consumption and potential toxicity of Amphidinium cf. carterae and Coolia monotis (Dinoflagellata). Rev Biol Mar Oceanogr 51:565–580

    Article  Google Scholar 

  • Barlow SB, Triemer RE (1988) Alternate life history stages in Amphidinium klebsii (Dinophyceae, Pyrrophyta). Phycologia 27:413–420

    Article  Google Scholar 

  • Barnett A, Méléder V, Dupuy C, Lavaud J (2020) The vertical migratory rhythm of intertidal microphytobenthos in sediment depends on the light photoperiod, intensity and spectrum: evidence for a positive effect of blue wavelengths. Front Mar Sci 7:212

    Article  Google Scholar 

  • Brand LE (1984) The salinity tolerance of forty-six marine phytoplankton isolates. Estuar Coast Shelf Sci 18:543–556

    Article  CAS  Google Scholar 

  • Cao Vien M (1967) Sur l’existence de phenomenes sexuels chez un Peridinien libre, l’Amphidinium carteri. CR Acad Sc Paris 264:1006–1008

    Google Scholar 

  • Cao Vien M (1968) Sur la germination du zygote et sur un mode particulier de multiplication végétative chez le Péridinien libre Amphidinium carteri. C R Acad Sc Paris 267:701–703

    Google Scholar 

  • Coleman AW (1998) Volvox: Molecular-genetic origins of multicellularity and cellular differentiation. Phycologia 37:314–315

    Article  Google Scholar 

  • Congleton JL (1980) Observations on the responses of some southern california tidepool fishes to nocturnal hypoxic stress. Comp Biochem Physiol -Part A Physiol 66:719–722

    Article  Google Scholar 

  • Dagenais-Bellefeuille S, Morse D (2013) Putting the N in dinoflagellates. Front Microbiol 4:369

    Article  PubMed  PubMed Central  Google Scholar 

  • Damjanović A, Ritz T, Schulten K (2000) Excitation transfer in the peridinin-chlorophyll-protein of Amphidinium carterae. Biophys J 79:1695–1705

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubinsky Z (1992) The functional and optical absorption cross-sections of phytoplankton photosynthesis. Primary productivity and biogeochemical cycles in the sea. Springer, US, pp 31–45

    Chapter  Google Scholar 

  • Durán-Riveroll LM, Cembella AD, Okolodkov YB (2019) A review on the biodiversity and biogeography of toxigenic benthic marine dinoflagellates of the coasts of Latin America. Front Mar Sci 6:148

    Article  Google Scholar 

  • Falkowski PG, Raven JA (2014) Aquatic Photosynthesis. Princeton University Press

    Google Scholar 

  • Faust MA, Steidinger KA (1998) Bysmatrum gen. nov. (Dinophyceae) and three new combinations for benthic scrippsielloid species. Phycologia 37:47–52

    Article  Google Scholar 

  • Franklin DJ, Berges JA (2004) Mortality in cultures of the dinoflagellate Amphidinium carterae during culture senescence and darkness. Proc R Soc B Biol Sci 271:2099–2107

    Article  Google Scholar 

  • Freudenthal HD (1962) Symbiodinium gen. nov. and Symbiodinium microadriaticum sp. nov., a Zooxanthella: taxonomy, life cycle and morphology. J Protozool 9:45–52

    Article  Google Scholar 

  • Fogg GE, Thake B (1987) Algal cultures and phytoplankton ecology. Univ of Wisconsin Press

  • Gottschling M, Soehner S, Zinssmeister C et al (2012) Delimitation of the Thoracosphaeraceae (Dinophyceae), including the calcareous dinoflagellates, based on large amounts of ribosomal RNA sequence data. Protist 163:15–24

    Article  PubMed  Google Scholar 

  • Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Häggqvist K, Lindholm T (2015) Phytoplankton communities in rock pools on the Åland Islands, SW Finland – environmental variables, functional groups and strategies. Biodiversity 16:15–26

    Article  Google Scholar 

  • Hofmann E, Wrench PM, Sharples FP et al (1996) Structural basis of light harvesting by carotenoids: peridinin- chlorophyll-protein from Amphidinium carterae. Science 80(272):1788–1791

    Article  Google Scholar 

  • Ismael AAH, Halim Y, Khalil AG (1999) Optimum growth conditions for Amphidinium carterae Hulburt from eutrophic waters in Alexandria (Egypt) and its toxicity to the brine shrimp Artemia salina. Grana 38:179–185

    Article  Google Scholar 

  • Jensen SL, Muller-Parker G (1994) Inorganic nutrient fluxes in anemone-dominated tide pools. Pac Sci 3:32–48

    Google Scholar 

  • Jeong HJ, Jang SH, Kang NS et al (2012) Molecular characterization and morphology of the photosynthetic dinoflagellate Bysmatrum caponii from two solar saltons in western Korea. Ocean Sci J 47:1–18

    Article  Google Scholar 

  • Jochem FJ (1999) Dark survival strategies in marine phytoplankton assessed by cytometric measurement of metabolic activity with fluorescein diacetate. Mar Biol 135:721–728

    Article  CAS  Google Scholar 

  • Kaiblinger C, Dokulil MT (2006) Application of fast repetition rate fluorometry to phytoplankton photosynthetic parameters in freshwaters. Photosynth Res 88:19–30

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Bok T-H, Paeng D-G et al (2017) Mobility of Amphidinium carterae hulburt measured by high-frequency ultrasound. J Acoust Soc Am 141(1):395–401

    Article  Google Scholar 

  • Kim YO, Han MS (2000) Seasonal relationships between cyst germination and vegetative population of Scrippsiella trochoidea (Dinophyceae). Mar Ecol Prog Ser 204:111–118

    Article  CAS  Google Scholar 

  • Kirk DL (1998) Volvox: a search for the molecular and genetic origins of multicellularity and cellular differentiation (No. 33). Cambridge University Press

  • Kita T, Fukuyo Y, Tokuda H, Hirano R (1993) Sexual reproduction of Alexandrium hiranoi (Dinophyceae). Bull Plankt Soc Japan 39:79–85

    Google Scholar 

  • Kolber Z, Falkowski PG (1993) Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol Oceanogr 38:1646–1665

    Article  CAS  Google Scholar 

  • Kolber Z, Zehr J, Falkowski P (1988) Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion in photosystem II. Plant Physiol 88:923–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JJ, Shpigel M, Freeman S et al (2003) Physiological ecology and possible control strategy of a toxic marine dinoflagellate, Amphidinium sp., from the benthos of a mariculture pond. Aquaculture 217:351–371

    Article  Google Scholar 

  • Ley AC, Mauzerall DC (1982) Absolute absorption cross-sections for Photosystem II and the minimum quantum requirement for photosynthesis in Chlorella vulgaris. BBA - Bioenerg 680:95–106

    Article  CAS  Google Scholar 

  • Limoges A, Mertens KN, Ruíz-Fernández AC, de Vernal A (2015) First report of fossilized cysts produced by the benthic Bysmatrum subsalsum (Dinophyceae) from a shallow Mexican lagoon in the Gulf of Mexico. J Phycol 51:211–215

    Article  PubMed  Google Scholar 

  • Liu Y, Chen T, Wang X et al (2020) Variation in the photosynthetic activities of the dinoflagellate Akashiwo sanguinea during formation of resting cysts. Mar Biol 167:158

    Article  CAS  Google Scholar 

  • Mandal SK, Singh RP, Patel V (2011) Isolation and characterization of exopolysaccharide secreted by a toxic dinoflagellate, Amphidinium carterae Hulburt 1957 and its probable role in harmful algal blooms (HABs). Microb Ecol 62:518–527

    Article  CAS  PubMed  Google Scholar 

  • Mauzerall D, Greenbaum NL (1989) The absolute size of a photosynthetic unit. BBA - Bioenerg 974:119–140

    Article  CAS  Google Scholar 

  • McLachlan J (1961) The effect of salinity on growth and chlorophyll content in representative classes of unicellular marine algae. Can J Microbiol 7:399–406

    Article  CAS  Google Scholar 

  • McMinn A, Martin A (2013) Dark survival in a warming world. Proc R Soc B Biol Sci 280(1755):2909

    Google Scholar 

  • Metaxas A, Scheibling RE (1993) Community structure and organization of tidepools. Mar Ecol Prog Ser 98:187–198

    Article  Google Scholar 

  • Mitbavkar S, Anil AC (2004) Vertical migratory rhythms of benthic diatoms in a tropical intertidal sand flat: Influence of irradiance and tides. Mar Biol 145:9–20

    Article  Google Scholar 

  • Molina-Miras A, López-Rosales L, Cerón-García MC et al (2020) Acclimation of the microalga Amphidinium carterae to different nitrogen sources: potential application in the treatment of marine aquaculture effluents. J Appl Phycol 32:1075–1094

    Article  CAS  Google Scholar 

  • Murray SA, Kohli GS, Farrell H et al (2015) A fish kill associated with a bloom of Amphidinium carterae in a coastal lagoon in Sydney, Australia. Harmful Algae 49:19–28

    Article  PubMed  PubMed Central  Google Scholar 

  • Naik SM, Anil AC (2018a) Survival in the dark: strategies adopted by Tetraselmis indica (Chlorodendrophyceae, Chlorophyta). Mar Biol Res 14:448–453

    Article  Google Scholar 

  • Naik SM, Anil AC (2018b) Influence of darkness on pigments of Tetraselmis indica (Chlorodendrophyceae, Chlorophyta). J Photochem Photobiol B Biol 186:17–22

    Article  CAS  Google Scholar 

  • Patil JS, Anil AC (2019) Assessment of phytoplankton photo-physiological status from a tropical monsoonal estuary. Ecol Indic 103:289–300

    Article  CAS  Google Scholar 

  • Patil JS, Rodrigues RV, Paul P et al (2017) Benthic dinoflagellate blooms in tropical intertidal rock pools: elucidation of photoprotection mechanisms. Mar Biol 164:89

    Article  Google Scholar 

  • Polívka T, Hiller RG, Frank HA (2007) Spectroscopy of the peridinin-chlorophyll-a protein: insight into light-harvesting strategy of marine algae. Arch Biochem Biophys 458:111–120

    Article  PubMed  Google Scholar 

  • Pommerville JC, Kochert GD (1981) Changes in somatic cell structure during senescence of Volvox carteri. Eur J Cell Biol 24:236–243

    CAS  PubMed  Google Scholar 

  • Prézelin BB (1982) Effects of light intensity on aging of the dinoflagellate Gonyaulax polyedra. Mar Biol 69:129–135

    Article  Google Scholar 

  • Rintala JM, Spilling K, Blomster J (2007) Temporary cyst enables long-term dark survival of Scrippsiella hangoei (Dinophyceae). Mar Biol 152:57–62

    Article  Google Scholar 

  • Roy R, Chitari R, Kulkarni V et al (2015) CHEMTAX-derived phytoplankton community structure associated with temperature fronts in the northeastern Arabian Sea. J Mar Syst 144:81–91

    Article  Google Scholar 

  • Sampayo MDM (1985) Encystment and excystment of a Portuguese isolate of Amphidinium carterae in culture. Toxic dinoflagellates. Elsevier, New York, NY, pp 125–130

  • Talling JF, Fogg GE (1966) Algal cultures and phytoplankton ecology. J Appl Ecol 3:215

    Article  Google Scholar 

  • Taylor FJR (1987) Ecology of dinoflagellates. In: The Biology of dinoflagellates. pp 399–501.

  • Van Heukelem L, Thomas CS, Glibert PM (2002) Sources of variability in chlorophyll analysis by fluorometry and by high performance liquid chromatography. Natl Aeronaut Sp Adm 211606:58

    Google Scholar 

  • Watanabe MM, Fukuyo Y (1982) Encystment and excystment of red tide flagellates II. Seasonality of excystment of Protogonyaulax tamarensis and P. catenella. Res Rep Natl Inst Environ Stud 30:43–52

    Google Scholar 

  • Zimmerman LA (2006) Environmental regulation of toxin production: comparison of hemolytic activity of Amphidinium carterae and Amphidinium klebsii. Grana 38:179–185

    Google Scholar 

Download references

Acknowledgements

We are grateful to the Director of CSIR–National Institute of Oceanography for his support and encouragement. We are also grateful to Dr. AC Anil for his support, encouragement and constant guidance. The first author also acknowledges UGC, India, for Maulana Azad National Fellowships. We are also thankful to the two anonymous reviewers for their suggestions in improving the manuscript. This is an NIO contribution No. 6910.

Funding

CSIR–National Institute of Oceanography (PSC0105).

Author information

Authors and Affiliations

Authors

Contributions

RVR and JSP contributed equally to planning, data interpretation, field collection and manuscript elaboration. RVR conducted measurements and statistical analysis. JSP supervised all works and approved the final submitted manuscript.

Corresponding author

Correspondence to J. S. Patil.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

No animal testing was performed during this study.

Additional information

Handling Editor: Ted Harris

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 178 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, R.V., Patil, J.S. Response of benthic dinoflagellates Amphidinium carterae and Bysmatrum gregarium to salinity changes and prolonged darkness: elucidation through laboratory experiments. Aquat Ecol 56, 1113–1126 (2022). https://doi.org/10.1007/s10452-022-09960-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-022-09960-y

Keywords

Navigation