Skip to main content
Log in

Application of phase-field modeling in solid-state phase transformation of steels

  • Review
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Solid-state phase transformation is usually associated with excellent mechanical properties in steel materials. A deep understanding of the formation and evolution of phase structure is essential to tailor their service performance. As a powerful tool for capturing the evolution of complex microstructures, phase-field simulation quantitatively calculates the phase structures evolution without explicit assumptions about transient microstructures. With the development of advanced numerical technology and computing ability, phase-field methods have been successfully applied to solid-state phase transformation in steels and greatly support the research and development of advanced steel materials. The phase-field simulations of solid-phase transformation in steels were summarized, and the future development was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.G. Khachaturian, Theory of structural transformations in solids, A Wiley-Interscience Publication, New York, USA, 1983.

    Google Scholar 

  2. H.K.D.H. Bhadeshia, Mater. Sci. Technol. 15 (1999) No. 1, 22–29.

    Article  Google Scholar 

  3. E. Pereloma, D.V. Edmonds, Phase transformations in steels, Woodhead Publishing Limited, Cambridge, UK, 2012.

    Book  Google Scholar 

  4. E. Pereloma, D.V. Edmonds, Diffusionless transformations, high strength steels, modelling and advanced analytical techniques, Woodhead Publishing Limited, Cambridge, UK, 2012.

    Google Scholar 

  5. M. Gouné, F. Danoix, J. Agren, Y. Bréchet, C.R. Hutchinson, M. Militzer, G. Purdy, H. Zurob, Mater. Sci. Eng. R Rep. 92 (2015) 1–38.

    Article  Google Scholar 

  6. Y. Ma, R. Zheng, Z.Y. Gao, U. Krupp, H.W. Luo, W. Song, W. Bleck, Int. J. Miner. Metall. Mater. 28 (2021) 847–853.

    Article  Google Scholar 

  7. Y. Wang, L.Q. Chen, A.G. Khachaturyan, Acta Metall. Et Mater. 41 (1993) 279–296.

    Article  Google Scholar 

  8. J.S. Langer, Directions in Condensed Matter Physics 1 (1986) 165–186.

    Article  Google Scholar 

  9. T.T. Arif, R.S. Qin, Adv. Mater. Res. 922 (2014) 31–36.

    Article  Google Scholar 

  10. I. Steinbach, Model. Simul. Mater. Sci. Eng. 17 (2009) 073001.

    Article  Google Scholar 

  11. M.E. Gurtin, Phys. D: Nonlinear Phenom. 92 (1996) 178–192.

    Article  Google Scholar 

  12. M. Düsing, R. Mahnken, Comput. Mater. Sci. 111 (2016) 91–100.

    Article  Google Scholar 

  13. A. Yamanaka, T. Takaki, Y. Tomita, Mater. Trans. 47 (2006) 2725–2731.

    Article  Google Scholar 

  14. C.J. Huang, D.J. Browne, S. Mcfadden, Acta Mater. 54 (2006) 11–21.

    Article  Google Scholar 

  15. R. Schmitt, R. Müller, C. Kuhn, H.M. Urbassek, Arch. Appl. Mech. 83 (2013) 849–859.

    Article  Google Scholar 

  16. I. Steinbach, M. Apel, Acta Mater. 55 (2007) 4817–4822.

    Article  Google Scholar 

  17. G.Z. Voyiadjis, N. Mozaffari, Int. J. Solids Struct. 50 (2013) 3136–3151.

    Article  Google Scholar 

  18. G.Z. Voyiadjis, N. Mozaffari, Modeling of nonlocal damage using the phase field method, Springer, New York, USA, 2013.

  19. A. Yamanaka, T. Takaki, Y. Tomita, Mater. Sci. Eng. A 491 (2008) 378–384.

    Article  Google Scholar 

  20. J. Wang, S.Q. Shi, L.Q. Chen, Y.L. Li, T.Y. Zhang, Acta Mater. 52 (2004) 749–764.

    Article  Google Scholar 

  21. X.Y. Liu, H.W. Li, M. Zhan, Manuf. Rev. 5 (2018) 10.

    Google Scholar 

  22. Y.S. Kang, Y.C. Jin, Y.H. Zhao, H. Hou, L.W. Chen, J. Iron Steel Res. Int. 24 (2017) 171–176.

    Article  Google Scholar 

  23. T.P. Qu, D.Y. Wang, H.H. Wang, D. Hou, L.J. Su, J. Iron Steel Res. Int. 28 (2021) 1149–1158.

    Article  Google Scholar 

  24. B.Q. Zhu, Phase-field modeling of microstructure evolution in low-carbon steels during intercritical annealing, University of British Columbia, Vancouver, Canada, 2015.

    Google Scholar 

  25. E. GamsjGer, J. Svoboda, F.D. Fischer, Comput. Mater. Sci. 32 (2005) 360–369.

    Article  Google Scholar 

  26. M. Düsing, R. Mahnken, Comput. Mater. Sci. 111 (2016) 91–100.

    Article  Google Scholar 

  27. I. Loginova, J. Odqvist, G. Amberg, J. Ågren, Acta Mater. 51 (2003) 1327–1339.

    Article  Google Scholar 

  28. J. Wang, T.Y. Zhang, Phys. Rev. B 73 (2006) 144107.

  29. M. Militzer, M.G. Mecozzi, J. Sietsma, S. Zwaag, Acta Mater. 54 (2006) 3961–3972.

    Article  Google Scholar 

  30. R. Schmitt, R. Müller, C. Kuhn, H.M. Urbassek, Arch. Appl. Mech. 83 (2013) 849–859.

    Article  Google Scholar 

  31. L. Vanherpe, F. Wendler, B. Nestler, S. Vandewalle, Math. Comput. Simul. 80 (2010) 1438–1448.

    Article  Google Scholar 

  32. F. Klocke, M. Mohammadnejad, R. Hess, S. Harst, A. Klink, Procedia CIRP 71 (2018) 99–104.

    Article  Google Scholar 

  33. F. Lu, L.Y. Wen, X. Han, W.H. Jiang, H.M. Duan, J. Xu, S.F. Zhang, J. Iron Steel Res. Int. 26 (2019) 829–837.

    Article  Google Scholar 

  34. H.Z. Zhao, X.H. Liu, G.D. Wang, J. Iron Steel Res. Int. 13 (2006) 68–73.

    Article  Google Scholar 

  35. Y.G. Zhou, J.L. Peng, K. Pan, Y.Y. Liu, Sci. China Technol. Sci. 59 (2016) 1059–1064.

    Article  Google Scholar 

  36. C.H. Lei, Y.Y. Liu, W.Q. Chen, Mech. Mater. 134 (2019) 9–17.

    Article  Google Scholar 

  37. N. Moelans, B. Blanpain, P. Wollants, Calphad 32 (2008) 268–294.

    Article  Google Scholar 

  38. H.K. Yeddu, A. Malik, J. Gren, G. Amberg, A. Borgenstam, Acta Mater. 60 (2012) 1538–1547.

    Article  Google Scholar 

  39. I. Steinbach, L. Zhang, M. Plapp, Acta Mater. 60 (2012) 2689–2701.

    Article  Google Scholar 

  40. K. Nakajima, M. Apel, I. Steinbach, Acta Mater. 54 (2006) 3665–3672.

    Article  Google Scholar 

  41. Y. Wang, A.G. Khachaturyan, Acta Mater. 45 (1997) 759–773.

    Article  Google Scholar 

  42. Y.M. Jin, A. Artemev, A.G. Khachaturyan, Acta Mater. 49 (2001) 2309–2320.

    Article  Google Scholar 

  43. H. Tanaka, J. Phys. Condens. Matter 12 (2000) R207.

    Article  Google Scholar 

  44. L.Q. Chen, Annu. Rev. Mater. Res. 32 (2002) 113–140.

    Article  Google Scholar 

  45. E.B. Farahani, B.S. Aragh, J. Voges, D. Juhre, Int. J. Mech. Sci. 194 (2020) 106187.

    Article  Google Scholar 

  46. R.S. Qin, H.K. Bhadeshia, Mater. Sci. Technol. 26 (2010) 803–811.

    Article  Google Scholar 

  47. J. Wang, T.Y. Zhang, Phys. Rev. B 73 (2006) 144107.

    Article  Google Scholar 

  48. B. Böttger, J. Eiken, M. Apel, Comput. Mater. Sci. 108 (2015) 283–292.

    Article  Google Scholar 

  49. A. Baganis, M. Bouzouni, S. Papaefthymiou, Metals 11 (2021) 241.

    Article  Google Scholar 

  50. Z.H. Shen, J.J. Wang, J.Y. Jiang, S.X. Huang, Y.H. Lin, C.W. Nan, L.Q. Chen, Y. Shen, Nat. Commun. 10 (2019) 1843.

    Article  Google Scholar 

  51. Y.Q. Zhu, T. Xu, Q.H. Wei, J.W. Mai, H.X. Yang, H.R. Zhang, T. Shimada, T. Kitamura, T.Y. Zhang, Npj Comput. Mater. 7 (2021) 205.

    Article  Google Scholar 

  52. V. Stanev, C. Oses, A.G. Kusne, E. Rodriguez, I. Takeuchi, Npj Comput. Mater. 4 (2018) 29.

    Article  Google Scholar 

  53. M. Yang, L. Wang, W.T. Yan, Npj Comput. Mater. 7 (2021) 56.

    Article  Google Scholar 

  54. L.Q. Chen, Y.Z. Wang, JOM 48 (1996) 13–18.

    Article  Google Scholar 

  55. H.Z. Deng, L. Wang, Y. Liu, X. Song, F.Q. Meng, S. Huang, Int. J. Miner. Metall. Mater. 28 (2021) 1949–1956.

    Article  Google Scholar 

  56. H.G. Zhong, X.R. Chen, Y.J. Liu, Z.Q. Wei, H.F. Yu, Q.J. Zhai, J. Iron Steel Res. Int. 28 (2021) 1125–1132.

    Article  Google Scholar 

  57. Z. Zhu, W.T. Fu, R.B. Li, Q.W. Chen, Z.H. Wang, J.Q. Liu, S.H. Sun, J. Iron Steel Res. Int. 28 (2021) 1030–1036.

    Article  Google Scholar 

  58. M. Militzer, H. Azizi-Alizamini, Solid State Phenom. 172–174 (2011) 1050–1059.

    Article  Google Scholar 

  59. P.R. Cha, J.Y. Kim, W.T. Kim, S.G. Kim, Adv. Manuf. Processes 25 (2010) 106–110.

    Article  Google Scholar 

  60. K.W. Lai, S.J. Shi, Z.W. Yan, Y.S. Li, S.S. Jin, D. Wang, S. Maqbool, Rare Met. 40 (2021) 1155–1163.

    Article  Google Scholar 

  61. H.K.D.H. Bhadeshia, Prog. Mater. Sci. 29 (1985) 321–386.

    Article  Google Scholar 

  62. A. Ven, L. Delaey, Prog. Mater. Sci. 40 (1996) 181–264.

    Article  Google Scholar 

  63. J.H. Wang, P. Yang, W.M. Mao, F.E. Cui, J. Iron Steel Res. Int. 27 (2020) 88–95.

    Article  Google Scholar 

  64. D.C. Fu, G.H. Wen, X.Q. Zhu, J.L. Guo, P. Tang, J. Iron Steel Res. Int. 28 (2021) 1133–1140.

    Article  Google Scholar 

  65. A.A. Vasilyev, D.F. Sokolov, N.G. Kolbasnikov, S.F. Sokolov, Solid State Phys. 54 (2012) 1669–1680.

    Article  Google Scholar 

  66. H. Chen, B. Zhu, M. Militzer, Metall. Mater. Trans. A 47 (2016) 3873–3881.

    Article  Google Scholar 

  67. B. Bttger, M. Apel, J. Eiken, P. Schaffnit, I. Steinbach, Steel Res. Int. 79 (2008) 608–616.

    Article  Google Scholar 

  68. M. Segawa, A. Yamanaka, S. Nomoto, Comput. Mater. Sci. 136 (2017) 67–75.

    Article  Google Scholar 

  69. S.G. Kim, W.T. Kim, T. Suzuki, Phys. Rev. E Stat. 60 (1999) 7186–7197.

    Article  Google Scholar 

  70. I. Steinbach, F. Pezzolla, Phys. D: Nonlinear Phenom. 134 (1999) 385–393.

    Article  Google Scholar 

  71. M.G. Mecozzi, J. Sietsma, D. Van, Acta Mater. 54 (2006) 1431–1440.

    Article  Google Scholar 

  72. T. Kohtake, M. Segawa, A. Yamanaka, J. Cryst. Growth 468 (2017) 63–67.

    Article  Google Scholar 

  73. L.J. Zhang, E.V. Danilova, I. Steinbach, D. Medvedev, P.K. Galenko, Acta Mater. 61 (2013) 4155–4168.

    Article  Google Scholar 

  74. I. Steinbach, Annu. Rev. Mater. Res. 43 (2013) 89–107.

    Article  Google Scholar 

  75. L. Zhang, I. Steinbach, Acta Mater. 60 (2012) 2702–2710.

    Article  Google Scholar 

  76. H. Fang, M.G. Mecozzi, E. Brück, D. Van, N.H. van Dijk, Metall. Mater. Trans. A 49 (2018) 41–53.

    Article  Google Scholar 

  77. M.M.H. Mousum, A.M. Rahman, M. Islam, in: Proceedings of the International Conference on Mechanical Engineering and Renewable Energy 2015 (ICMERE2015), Chittagong, Bangladesh, 2015, ICMERE2015-PI-075.

  78. D.Q. Zhang, Y.J. Yin, J.X. Zhou, Z.X. Tu, China Foundry 14 (2017) 435–442.

    Article  Google Scholar 

  79. A. Yamanaka, T. Yamamoto, T. Takaki, Y. Tomita, in: Proc. 4th Int. Conf. Multiscale Mater. Model. (MMM2008), Florida, USA, 2008, pp. 425-428.

  80. Y. Sun, W.S. Yang, H.J. Guo, J. Guo, S.C. Duan, J. Iron Steel Res. 33 (2021) 619–626.

    Google Scholar 

  81. M. Hillert, Jernkontorets Ann. 141 (1957) 757–789.

    Google Scholar 

  82. R.C. Sharma, G.R. Purdy, Metall. Trans. 4 (1973) 2303–2311.

    Article  Google Scholar 

  83. K. Nakajima, Y. Tanaka, Y. Hosoya, M. Apel, I. Steinbach, Mater. Sci. Forum 558–559 (2007) 1013–1020.

    Article  Google Scholar 

  84. X.H. Zhi, J.Z. Liu, J.D. Xing, S.Q. Ma, Mater. Sci. Eng. A 603 (2014) 98–103.

    Article  Google Scholar 

  85. G. Miyamoto, Y. Karube, T. Furuhara, Acta Mater. 103 (2016) 370–381.

    Article  Google Scholar 

  86. E.S. Davenport, E.C. Bain, Metall. Mater. Trans. B 1 (1970) 3473–3530.

    Google Scholar 

  87. H. Bhadeshia, Metall. Mater. Trans. B 41 (2010) 701–740.

    Article  Google Scholar 

  88. M. Hillert, Metall. Mater. Trans. A 42 (2011) 541–542.

    Article  Google Scholar 

  89. T.T. Arif, R.S. Qin, Comput. Mater. Sci. 77 (2013) 230–235.

    Article  Google Scholar 

  90. R. Ranjan, H. Beladi, S.B. Singh, P.D. Hodgson, Metall. Mater. Trans. A 46 (2015) 3232–3247.

    Article  Google Scholar 

  91. Y.U. Wang, Acta Mater. 54 (2006) 953–961.

    Article  Google Scholar 

  92. H.K. Bhadeshia, Sci. Technol. Adv. Mater. 14 (2013) 014202.

    Article  Google Scholar 

  93. F.G. Caballero, H.K.D.H. Bhadeshia, Curr. Opin. Solid State. Mater. Sci. 8 (2004) 251–257.

    Article  Google Scholar 

  94. M.J. Holzweissig, M.C. Uslu, H.G. Lambers, D. Canadinc, H.J. Maier, Mater. Res. Lett. 1 (2013) 141–147.

    Article  Google Scholar 

  95. M. Weikamp, C. Hüter, M.X. Lin, U. Prahl, D. Schicchi, M. Hunkel, R. Spatschek, JARA High-performance Computing Symposium 10164 (2016) 125–138.

    Google Scholar 

  96. R. Mahnken, C. Cheng, M. Düsing, U. Ehlenbröker, T. Leismann, GAMM-Mitteil. 39 (2016) 229–265.

    Article  Google Scholar 

  97. M. Düsing, R. Mahnken, Int. J. Solids Struct. 162 (2019) 45–59.

    Article  Google Scholar 

  98. M. Düsing, R. Mahnken, Arch. Appl. Mech. 86 (2016) 1–18.

    Article  Google Scholar 

  99. A.A. Wheeler, W.J. Boettinger, G.B. Mcfadden, Phys. Rev. A 45 (1992) 7424–7439.

    Article  Google Scholar 

  100. M. Düsing, R. Mahnken, Proc. Appl. Math. Mech. 15 (2015) 285–286.

    Article  Google Scholar 

  101. M. Düsing, R. Mahnken, Int. J. Solids Struct. 135 (2017) 45–59.

    Google Scholar 

  102. G. Jumov, Metall. Mater. Trans. A 7 (1976) 999–1011.

    Article  Google Scholar 

  103. N. Seljakow, G. Kurdjumow, N. Goodtzow, Z. Phys. 45 (1927) 384–408.

    Article  Google Scholar 

  104. M. Mamivand, M.A. Zaeem, H.E. Kadiri, Comput. Mater. Sci. 77 (2014) 304–311.

    Article  Google Scholar 

  105. C. Celada-Casero, J. Sietsma, M.J. Santofimia, Mater. Des. 167 (2019) 107625.

    Article  Google Scholar 

  106. F. Zhu, F. Chai, X.B. Luo, Z.Y. Zhang, C.F. Yang, J. Iron Steel Res. Int. 28 (2021) 464–478.

    Article  Google Scholar 

  107. L.J. Li, W.M. Li, M. Chen, X.M. Zang, J. Iron Steel Res. 32 (2020) 847–859.

    Google Scholar 

  108. W. Zhang, Y.M. Jin, A.G. Khachaturyan, Acta Mater. 55 (2007) 565–574.

    Article  Google Scholar 

  109. H.H. Wu, Y.B. Ke, J.M. Zhu, Z.D. Wu, X.L. Wang, J. Phys. D: Appl. Phys. 54 (2021) 155301.

    Article  Google Scholar 

  110. A. Artemev, Y. Jin, A.G. Khachaturyan, Acta Mater. 49 (2001) 1165–1177.

    Article  Google Scholar 

  111. X.H. Guo, S.Q. Shi, X.Q. Ma, Appl. Phys. Lett. 87 (2005) 221910.

    Article  Google Scholar 

  112. M.G. Mecozzi, J. Eiken, M.J. Santofimia, J. Sietsma, Comput. Mater. Sci. 112 (2016) 245–256.

    Article  Google Scholar 

  113. Y. Takahama, M.J. Santofimia, M.G. Mecozzi, L. Zhao, J. Sietsma, Acta Mater. 60 (2012) 2916–2926.

    Article  Google Scholar 

  114. J.D. Verhoeven, E.D. Gibson, Metall. Mater. Trans. A 29 (1998) 1181–1189.

    Article  Google Scholar 

  115. K. Ankit, R. Mukherjee, T. Mittnacht, B. Nestler, Acta Mater. 81 (2014) 204–210.

    Article  Google Scholar 

  116. K. Ankit, T. Mittnacht, R. Mukherjee, B. Nestler, Comput. Mater. Sci. 108 (2015) 342–347.

    Article  Google Scholar 

  117. W.J. Boettinger, J.A. Warren, C. Beckermann, A. Karma, Annu. Rev. Mater. Res. 32 (2002) 163–194.

    Article  Google Scholar 

  118. K.E. Thelning, in: Steel and Its heat Treatment, Elsevier, 1975, pp. 82–126.

  119. G.A. Roberts, R.F. Mehl, Trans. ASM 31 (1943) 613–650.

    Google Scholar 

  120. G.R. Speich, A. Szirmae, M.J. Richards, Trans. Met. Soc. AIME 245 (1969) 1063.

    Google Scholar 

  121. Z.H. Shen, J.J. Wang, Y.H. Lin, C.W. Nan, L.Q. Chen, Adv. Mater. 30 (2017) 1704380.

    Article  Google Scholar 

  122. Z. Cheng, S.Z. Wang, G.L. Wu, J.H. Gao, X.S. Yang, H.H. Wu, Int. J. Miner. Metall. Mater. 29 (2022) 389–403.

    Article  Google Scholar 

  123. Z.J. Gao, S.Z. Wang, H.H. Wu, J.Y. Li, X.P. Mao, Compos. Commun. 22 (2020) 100521.

    Article  Google Scholar 

  124. T.L. Zhang, C.T. Liu, Adv. Powder Technol. (2021) https://doi.org/10.1016/j.apmate.2021.11.001.

    Article  Google Scholar 

  125. D.C. Kim T. Ogura, R. Hamada, S. Yamashita, K. Saida, Mater. Today Commun. 26 (2021) 101932.

    Article  Google Scholar 

  126. H. Eldahshan, P.O. Bouchard, J. Alves, E. Perchat, D.P. Munoz, Comput. Mech. 67 (2021) 763–783.

    Article  Google Scholar 

  127. C.J. Cui, R.J. Ma, E. Martínez-Pañeda, J. Mech. Phys. Solids 147 (2021) 104254.

    Article  Google Scholar 

  128. S.W. Wang, S.Z. Wang, H.H. Wu, Y. Wu, Z.L. Mi, X.P. Mao, Sci. Bull. 66 (2021) 958–961.

    Article  Google Scholar 

  129. J. Wang T.Y. Zhang, Acta Mater. 55 (2007) 2465–2477.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52071023, 51901013, and 52122408). H.H. Wu also thanks to the financial support from the Fundamental Research Funds for the Central Universities (University of Science and Technology Beijing, Nos. FRF-TP-2021-04C1 and 06500135).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shui-ze Wang or Hong-hui Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Sj., Wang, Sz., Wu, Gl. et al. Application of phase-field modeling in solid-state phase transformation of steels. J. Iron Steel Res. Int. 29, 867–880 (2022). https://doi.org/10.1007/s42243-022-00775-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00775-7

Keywords

Navigation