Skip to main content
Log in

A comprehensive study of modulation effects on CMB polarization

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The Cosmic Microwave Background is characterized by temperature and linear polarization fields. Dipole modulation in the temperature field has been extensively studied in the context of hemispherical power asymmetry. In this article, we show that a dipole modulation, and in general, any kind of modulation isn’t allowed in the E and B modes. This is the main result of this paper. This result explains why no evidence of modulation in E mode has been found in the literature. On the contrary, the linear polarization fields Q and U have no such restrictions. We show that modulation under certain situations can be thought of as local U(1) gauge transformations on the surface of a sphere. As far as the modulation function is concerned, we show that physical considerations enforce it to be (i) a spin 0 field and (ii) a scalar under parity. As masking is a specific type of modulation, our study suggests that a direct masking of E mode isn’t also possible. Masking in E map can only be applied through Q and U fields. This means that in principle, leaking of E and B mode powers into each other is unavoidable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Data availibility

No new data was generated or analysed in support of this research.

Notes

  1. In general, a field \(\Psi \) on a sphere \({\mathbb {S}}^2\) has spin s, if under a right handed rotation of the local coordinate system by an angle \(\alpha \), it transforms as \(\Psi \mapsto \Psi '=\Psi e^{-is\alpha }\).

References

  1. Zaldarriaga, M., Seljak, U.: An all sky analysis of polarization in the microwave background. Phys. Rev. D 55, 1830 (1997). arXiv:astro-ph/9609170

    Article  ADS  Google Scholar 

  2. Sadegh, M., Mohammadi, R., Motie, I.: Generation of circular polarization in CMB radiation via nonlinear photon-photon interaction. Phys. Rev. D 97, 023023 (2018). arXiv:1711.0

    Article  ADS  Google Scholar 

  3. Vahedi, A., Khodagholizadeh, J., Mohammadi, R., Sadegh, M.: Generation of circular polarization of CMB via polarized Compton scattering. JCAP 01, 052 (2019). https://doi.org/10.1088/1475-7516/2019/01/052. arXiv:1809.08137

    Article  ADS  Google Scholar 

  4. Bartolo, N., Hoseinpour, A., Matarrese, S., Orlando, G., Zarei, M.: CMB circular and B-mode polarization from new interactions. Phys. Rev. D (2019). https://doi.org/10.1103/PhysRevD.100.043516. arXiv:1903.04578

    Article  MathSciNet  Google Scholar 

  5. Eriksen, H., Hansen, F., Banday, A., Gorski, K., Lilje, P.: Asymmetries in the cosmic microwave background anisotropy field. Astrophys. J. 605, 14 (2004). https://doi.org/10.1086/382267. arXiv:astro-ph/0307507

    Article  ADS  Google Scholar 

  6. Hoftuft, J., Eriksen, H., Banday, A., Gorski, K., Hansen, F., Lilje, P.: Increasing evidence for hemispherical power asymmetry in the five-year WMAP data. Astrophys. J. 699, 985 (2009). https://doi.org/10.1088/0004-637X/699/2/985. arXiv:0903.1229

    Article  ADS  Google Scholar 

  7. Eriksen, H.K., Banday, A., Gorski, K., Hansen, F., Lilje, P.: Hemispherical power asymmetry in the three-year Wilkinson microwave anisotropy probe sky maps. Astrophys. J. Lett. 660, L81 (2007). https://doi.org/10.1086/518091. arXiv:astro-ph/0701089

    Article  ADS  Google Scholar 

  8. Planck Collaboration: Planck 2013 results. XXIII. Isotropy and statistics of the CMB. Astron. Astrophys. 571, A23 (2014) https://doi.org/10.1051/0004-6361/201321534arXiv:1303.5083

  9. Planck Collaboration: Planck 2015 results. XVI. Isotropy and statistics of the CMB. Astron. Astrophys. 594, A16 (2016) https://doi.org/10.1051/0004-6361/201526681arXiv:1506.07135

  10. Planck Collaboration: Planck 2018 results. VII. Isotropy and statistics of the CMB. Astron. Astrophys. 641, A7 (2020) https://doi.org/10.1051/0004-6361/201935201arXiv:1906.02552

  11. Gordon, C., Hu, W., Huterer, D., Crawford, T.M.: Spontaneous isotropy breaking: a mechanism for CMB multipole alignments. Phys. Rev. D (2005). https://doi.org/10.1103/PhysRevD.72.103002. arXiv:astro-ph/0509301

    Article  Google Scholar 

  12. Gordon, C.: Broken isotropy from a linear modulation of the primordial perturbations. Astrophys. J. 656, 636 (2007). https://doi.org/10.1086/510511. arXiv:astro-ph/0607423

    Article  ADS  Google Scholar 

  13. Prunet, S., Uzan, J.-P., Bernardeau, F., Brunier, T.: Constraints on mode couplings and modulation of the CMB with WMAP data. Phys. Rev. D 71, 083508 (2005). https://doi.org/10.1103/PhysRevD.71.083508. arXiv:astro-ph/0406364

    Article  ADS  Google Scholar 

  14. Bennett, C., et al.: Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: are there cosmic microwave background anomalies? Astrophys. J. Suppl. 192, 17 (2011). https://doi.org/10.1088/0067-0049/192/2/17. arXiv:1001.4758

    Article  ADS  Google Scholar 

  15. Hajian, A., Souradeep, T.: Measuring statistical isotropy of the CMB anisotropy. Astrophys. J. Lett. 597, L5 (2003). https://doi.org/10.1086/379757. arXiv:astro-ph/0308001

    Article  ADS  Google Scholar 

  16. Pullen, A.R., Kamionkowski, M.: Cosmic microwave background statistics for a direction-dependent primordial power spectrum. Phys. Rev. D (2007). https://doi.org/10.1103/PhysRevD.76.103529. arXiv:0709.1144

    Article  Google Scholar 

  17. Kothari, R., Ghosh, S., Rath, R.K., Kashyap, G., Jain, P.: Imprint of inhomogeneous and anisotropic primordial power spectrum on CMB polarization. Mon. Not. R. Astron. Soc. 460, 1577 (2016). https://doi.org/10.1093/mnras/stw1039. arXiv:1503.08997

    Article  ADS  Google Scholar 

  18. Kothari, R., Rath, R.K., Jain, P.: Cosmological power spectrum in a noncommutative spacetime. Phys. Rev. D 94, 063531 (2016). https://doi.org/10.1103/PhysRevD.94.063531. arXiv:1503.03859

    Article  MathSciNet  ADS  Google Scholar 

  19. Ackerman, L., Carroll, S.M., Wise, M.B.: Imprints of a primordial preferred direction on the microwave background. Phys. Rev. D (2007). https://doi.org/10.1103/PhysRevD.75.083502. arXiv:astro-ph/0701357

    Article  Google Scholar 

  20. Chang, Z., Rath, R.K., Sang, Y., Zhao, D.: Anisotropic power spectrum and the observed low-l power in PLANCK CMB data. Res. Astron. Astrophys. 18, 029 (2018). https://doi.org/10.1088/1674-4527/18/3/29. arXiv:1801.02773

    Article  ADS  Google Scholar 

  21. Dey, A., Kovetz, E.D., Paban, S.: Power spectrum and Non-Gaussianities in anisotropic inflation. JCAP 06, 025 (2014). https://doi.org/10.1088/1475-7516/2014/06/025. arXiv:1311.5606

    Article  ADS  Google Scholar 

  22. Ma, Y.-Z., Efstathiou, G., Challinor, A.: Testing a direction-dependent primordial power spectrum with observations of the cosmic microwave background. Phys. Rev. D (2011). https://doi.org/10.1103/PhysRevD.83.083005. arXiv:1102.4961

    Article  Google Scholar 

  23. Aluri, P.K., Shafieloo, A.: Power asymmetry in CMB polarization maps from PLANCK : a local variance analysis. arXiv:1710.00580

  24. Ghosh, S., Jain, P.: A pixel space method for testing dipole modulation in the CMB polarization. Mon. Not. R. Astron. Soc. 492, 3994 (2020). https://doi.org/10.1093/mnras/stz3627. arXiv:1807.02359

    Article  ADS  Google Scholar 

  25. Kochappan, J.P., Sen, A., Ghosh, T., Chingangbam, P., Basak, S.: Application of contour Minkowski tensor and \({\cal{D}}\) statistic to the Planck \(E\)-mode data. arXiv:2106.05757

  26. Smith, K.M.: Pseudo-\(C_\ell \) estimators which do not mix E and B modes. Phys. Rev. D 74, 083002 (2006). https://doi.org/10.1103/PhysRevD.74.083002. arXiv:astro-ph/0511629

    Article  Google Scholar 

  27. Lewis, A., Challinor, A., Turok, N.: Analysis of CMB polarization on an incomplete sky. Phys. Rev. D 65, 023505 (2002). https://doi.org/10.1103/PhysRevD.65.023505. arXiv:astro-ph/0106536

    Article  ADS  Google Scholar 

  28. Newman, E.T., Penrose, R.: Note on the Bondi-Metzner-Sachs Group. J. Math. Phys. 7, 863 (1966). https://doi.org/10.1063/1.1931221

    Article  MathSciNet  ADS  Google Scholar 

  29. Goldberg, J.N., MacFarlane, A.J., Newman, E.T., Rohrlich, F., Sudarshan, E.C.G.: Spin s spherical harmonics and edth. J. Math. Phys. 8, 2155 (1967). https://doi.org/10.1063/1.1705135

    Article  MATH  ADS  Google Scholar 

  30. Dray, T.: A unified treatment of Wigner D functions, spin-weighted spherical harmonics, and monopole harmonics. J. Math. Phys. 27, 781 (1986). https://doi.org/10.1063/1.527183

    Article  MathSciNet  MATH  ADS  Google Scholar 

  31. Dray, T.: The relationship between monopole harmonics and spin weighted spherical harmonics. J. Math. Phys. 26, 1030 (1985). https://doi.org/10.1063/1.526533

    Article  MathSciNet  MATH  ADS  Google Scholar 

  32. Greco, A., Bartolo, N., Gruppuso, A.: Cosmic birefringence: cross-spectra and cross-bispectra with CMB anisotropies. arXiv:2202.04584

  33. Ghosh, S., Kothari, R., Jain, P., Rath, R.K.: Dipole modulation of cosmic microwave background temperature and polarization. JCAP 01, 046 (2016). https://doi.org/10.1063/1.526533. arXiv:1507.04078

    Article  ADS  Google Scholar 

  34. Contreras, D., Zibin, J.P., Scott, D., Banday, A.J., Górski, K.M.: Testing physical models for dipolar asymmetry with CMB polarization. Phys. Rev. D 96, 123522 (2017). https://doi.org/10.1103/PhysRevD.96.123522. arXiv:1704.03143

    Article  ADS  Google Scholar 

  35. Hansen, F.K., Gorski, K.M.: Fast CMB power spectrum estimation of temperature and polarisation with Gabor transforms. Mon. Not. R. Astron. Soc. 343, 559 (2003). https://doi.org/10.1046/j.1365-8711.2003.06695.x. arXiv:astro-ph/0207526

    Article  ADS  Google Scholar 

  36. Zaldarriaga, M., Seljak, U.: Gravitational lensing effect on cosmic microwave background polarization. Phys. Rev. D 58, 023003 (1998). https://doi.org/10.1103/PhysRevD.58.023003. arXiv:astro-ph/9803150

    Article  ADS  Google Scholar 

  37. Kesden, M., Cooray, A., Kamionkowski, M.: Separation of gravitational wave and cosmic shear contributions to cosmic microwave background polarization. Phys. Rev. Lett. 89, 011304 (2002). https://doi.org/10.1103/PhysRevLett.89.011304. arXiv:astro-ph/0202434

    Article  ADS  Google Scholar 

  38. Knox, L., Song, Y.-S.: A limit on the detectability of the energy scale of inflation. Phys. Rev. Lett. (2002). https://doi.org/10.1103/PhysRevLett.89.011303. arXiv:astro-ph/0202286

    Article  Google Scholar 

  39. Upham, R.E., Whittaker, L., Brown, M.L.: Exact joint likelihood of pseudo-\(C_\ell \) estimates from correlated Gaussian cosmological fields. Mon. Not. R. Astron. Soc. 491, 3165 (2020). https://doi.org/10.1093/mnras/stz3225. arXiv:1908.00795

    Article  Google Scholar 

  40. LiteBIRD Collaboration: Probing cosmic inflation with the LiteBIRD cosmic microwave background polarization survey. arXiv:2202.02773

  41. Lin, Y.-T., Wandelt, B.D.: A beginner’s guide to the theory of CMB temperature and polarization power spectra in the line-of-sight formalism. Astropart. Phys. 25, 151 (2006). https://doi.org/10.1016/j.astropartphys.2005.12.002. arXiv:astro-ph/0409734

    Article  ADS  Google Scholar 

  42. Rocha, G., Contaldi, C.R., Bond, J.R., Gorski, K.M.: Application of XFaster power spectrum and likelihood estimator to Planck. Mon. Not. R. Astron. Soc. 414, 823 (2011). https://doi.org/10.1111/j.1365-2966.2010.17980.x. arXiv:0912.4059

    Article  ADS  Google Scholar 

  43. Akofor, E., Balachandran, A.P., Jo, S.G., Joseph, A., Qureshi, B.A.: Direction-dependent CMB power spectrum and statistical anisotropy from noncommutative geometry. JHEP 05, 092 (2008). https://doi.org/10.1088/1126-6708/2008/05/092. arXiv:0710.5897

    Article  ADS  Google Scholar 

  44. Namjoo, M., Abolhasani, A., Assadullahi, H., Baghram, S., Firouzjahi, H., Wands, D.: Expected dipole asymmetry in CMB polarization. JCAP 05, 015 (2015). https://doi.org/10.1088/1475-7516/2015/05/015. arXiv:1411.5312

    Article  ADS  Google Scholar 

  45. Zarei, M.: Dipole modulation in tensor modes: signatures in CMB polarization. Eur. Phys. J. C 75, 268 (2015). https://doi.org/10.1140/epjc/s10052-015-3490-x. arXiv:1412.0289

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I am thankful to Shamik Ghosh, Prof. Pankaj Jain for illuminating discussions that culminated in this paper. I am extremely grateful to Prof. Roy Maartens for suggestions. Finally, I am enormously indebted to the anonymous referee whose comments were very helpful in improving the presentation of this paper. I’m supported by the South African Radio Astronomy Observatory (SARAO) and the National Research Foundation (Grant No. 75415). I also sincerely acknowledge the Institute Post Doctoral Fellowship of IIT Madras where some part of this work was done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Kothari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Spherical harmonic coefficients of the modulating function

Spherical harmonic coefficients of the modulating function

Fig. 2
figure 2

Plot of the modulating function f in different cases. For all these cases, we take \(A_0=0\). From left to right, a a linear combination of dipole and quadrupole \(\rightarrow \) \(A_{i}=0.2\delta _{1i}+0.1\delta _{2i}\), \({\varvec{\uplambda }}_{i}=(0,0,1)\delta _{1i}+(0,1,1)\delta _{2i}\) b a pure quadrupole \(\rightarrow \) \(A_{i}=0.2\delta _{2i}\), \({\varvec{\uplambda }}_{i}=(0,0,1)\delta _{2i}\) and (c) a linear combination of quadrupole and hexadecapole \(\rightarrow \) \(A_{i}=0.09\delta _{2i}+0.1\delta _{4i}\), \({\varvec{\uplambda }}_{i}=(-1,-1,0)\delta _{2i}+(0,0,1)\delta _{4i}\)

Our analysis till this point restricts the function f to only have spin 0 and being scalar under parity. But in principle it can take any form. In this section, we study specific forms of the modulating function f. Our choice is motivated by the dipole modulation model that has been employed to study hemispherical power asymmetry in the T field of CMB (Eq. 3.1). A similar kind of dipole modulation has been used for \(Q\pm iU\) fields [24, 33, 34, 44]. This modulation has only one amplitude A and a direction \({\varvec{\uplambda }}\).

In general, we can have different alignments of dipolar, quadrupolar, octupolar, etc., modulations along different directions \({\varvec{\uplambda }}_i\) and with different amplitudes \(A_i\). These would be proportional to different exponents of \({\varvec{\uplambda }}_i\cdot {\mathbf {n}}\). This motivates the following modulating function,

$$\begin{aligned} f({\mathbf {n}})=1+A_{1}({\varvec{\uplambda }}_1\cdot {\mathbf {n}})+A_{2}({\varvec{\uplambda }}_2\cdot {\mathbf {n}})^{2}+\ldots =\sum _{i=0}^{\infty }A_{i}(\cos \gamma _{i})^{i},\ \ A_0=1,\ \ A_i\in {\mathbb {C}}. \nonumber \\ \end{aligned}$$
(A.1)

In the above equation, we have defined \(\cos \gamma _i={\varvec{{\uplambda }}}_i\cdot {\mathbf {n}}\). Notice that we have written the modulating function as a linear combination of pure dipole, quadrupole, etc., terms. In Fig. 2, we have shown the plots of the modulating function f with various possibilities.

In order to calculate the corresponding modulated coefficients, our objective is to find out the spherical harmonic coefficients \(f_{\ell m}\) of the modulating function f. For that, we notice that any power of \(\cos \gamma _{i}\) can be written as a linear combination of the Legendre’s polynomials \({\mathcal {P}}_{\ell }(\cos \gamma _{i})\) with appropriate coefficients. So we write (no sum over i on either sides)

$$\begin{aligned} (\cos \gamma _{i})^{i}=\sum _{\ell \ge 0}\alpha _{i,\ell }{\mathcal {P}}_{\ell }(\cos \gamma _{i}). \end{aligned}$$
(A.2)

The ‘base change’ coefficients \(\alpha _{i,\ell }\) can be easily found using any table on Legendre’s polynomials. Using addition theorem of spherical harmonics, we can express the Legendre’s polynomials in terms of spherical harmonics

$$\begin{aligned} {\mathcal {P}}_{\ell }(\cos \gamma _{i})=\frac{4\pi }{2\ell +1}\sum _{m=-\ell }^{\ell }Y_{\ell m}({\mathbf {n}})Y_{\ell m}^{*}({\varvec{\uplambda }}_{i}). \end{aligned}$$
(A.3)

Finally, using Eqs. (A.3) and (A.2) in (A.1), the spherical harmonic coefficients \(f_{\ell m}\) are found to be

$$\begin{aligned} f_{\ell m} = \frac{4\pi }{2\ell +1}\sum _{i=0}^\infty A_i\,\alpha _{i,\ell }\,Y_{\ell m}^*({\varvec{\uplambda }}_i) \end{aligned}$$
(A.4)

These harmonic coefficients for some special cases of pure monopole, dipole, etc., modulations are given in Table 1.

Table 1 Spherical harmonic coefficients \(f_{\ell m}\) of the modulating function f in some specific cases

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kothari, R. A comprehensive study of modulation effects on CMB polarization. Gen Relativ Gravit 54, 37 (2022). https://doi.org/10.1007/s10714-022-02921-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-02921-8

Keywords

Navigation