Skip to main content

Advertisement

Log in

Morphological characteristics and growth influencing factors of Paleocene glauberite minerals in Jiangling Depression, China

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

Glauberite is the most common mineral in the ancient sodium sulphate deposits in the Jianghan Basin, although its origin, primary or diagenetic, continues to be a matter of debate. A number of glauberite deposits of Paleocene age in the Jiangling Depression display facies characteristics of sedimentologic significance. Based on field investigation and laboratory analysis, we determined three characteristics forms, rhombus I, rhombus II and long tabular shape. The glauberite crystal shapes in the south of Jiangling Depression mainly are macrocrystalline rhombus I and II, with the secondary amount of medium-grained crystal long tabular glauberite. This type of glauberite is interpreted as an unrest, shallow water and quickly crystallization, undergoing a strong evaporation along the lake basin boundary system. In the interior of the Jiangling Depression, glauberite assemblage is made up of fine-medium grained crystals of glauberite. The depositional environment is interpreted as a static and deeper water environment, which experienced a slow crystallization process. By studying morphology characteristics and depositional conditions of glauberite, we consider that different types of shapes and groups are the products of lake water evaporating under different climate conditions. Glauberite–halite lithofacies association is distinguished: association is composed of thin-bedded cloudy halite and thin-bedded glauberite. Transparent glauberite cemented by clear halite as well as normal-graded and reverse-graded glauberite textures are common. This type of transparent glauberite is interpreted as a primary, subaqueous precipitate. The glauberite in the Jiangling Depression are mainly stratified with typical rhythmic bedding, which is composed of the interaction between glauberite lamina and argillaceous dolomitic lamina or dolomitic argillaceous lamina. The tuberculous glauberite has remarkable top bending structure, which shows the penecontemporaneous in the process of its diagenesis. The evaporite cycle sequence of drillhole indicates that the brine of the salt lake in the south of Jiangling Depression is Na–K–Ca–Cl–SO4 type in the Paleocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

modified from Meng et al. 2014)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arakel AV, Cohen A (1991) Deposition and early diagenesis of playa glauberite in the Karinga Creek drainage system, Northern Territory, Australia. Sediment Geol 70:41–59

    Article  Google Scholar 

  • Bown P, Pearson P (2009) Calcareous plankton evolution and the Paleocene/Eocene thermal maximum event: New evidence from Tanzania. Mar Micropaleontol 71:60–70

    Article  Google Scholar 

  • Cowling SA (1999) Plants and temperature: CO2 uncoupling. Science 285:1500–1501

    Article  Google Scholar 

  • Eugster HP, Hardie LA (1978) Lakes: chemistry, geology, physics. In: Lermann A (ed) Saline lakes. Springer, Berlin, pp 237–293

    Google Scholar 

  • Gu SQ, Lin HZ (1986) Experimental study on hydroglauberite. Chin Sci Bull 9:684–688

    Article  Google Scholar 

  • Hardie LA (1968) The origin of the recent non-marine evaporite deposit of Saline Balley, Inyo Country, California. Geochim Cosmochim Acta 32:1279–1301

    Article  Google Scholar 

  • Harrington GJ, Clechenko ER, Kelly DC (2005) Palynology and organic-carbon isotope radios across a terrestrial Paleocene/Eocene boundary section in the Williston Basin, North Dakoda, USA. Palaeogeogr Palaeoclimatol Palaeoecol 226:214–232

    Article  Google Scholar 

  • Higgins JA, Schrag DP (2006) Beyond methane: towards a theory for the Paleocene-Eocene thermal maximum. Earth Planet Sci Lett 145:523–537

    Article  Google Scholar 

  • Huang CG, Yuan XY, Song CH, Yuan JY, Ni XL, Ma XM, Zhang SM (2018) Characteristics, origin, and role of salt minerals in the process of hydrocarbon accumulation in the saline lacustrine basin of the Yingxi Area, Qaidam, China. Carbonates Evaporites 33:431–446. https://doi.org/10.1007/s13146-017-0350-9

    Article  Google Scholar 

  • Josep MS, Javier G, Ortí F (2007) Glauberite–halite association of the Zaragoza Gypsum Formation (Lower Miocene, Ebro Basin, NE Spain). Sedimentology 54:443–467

    Article  Google Scholar 

  • Ju YW, Huang C, Sun Y, Wan Q, Lu XC, Lu SF, He HP, Wang XQ, Zou CN, Wu JG, Liu HL, Shao LY, Wu XL, Chai HT, Liu QF, Qiu JS, Wang M, Cai JC, Wang GC, Sun Y (2017) Nanogeosciences: research history, current status, and development trends. J Nanogeosci Nanotechnol 17:5930–5965

    Article  Google Scholar 

  • Ju Y, Sun Y, Tan J, Bu H, Han K, Li X, Fang L (2018) The composition, pore structure characterization and deformation mechanism of coal-bearing shales from tectonically altered coalfields in eastern China. Fuel 234:626–642

    Article  Google Scholar 

  • Kalb AL, Bralower TJ (2012) Nannoplankton origination events and environmental changes in the late Paleocene and early Eocene. Mar Micropaleontol 92–93:1–15

    Article  Google Scholar 

  • Kennett JP, Stott LD (1991) Abrupt deep-sea warming, paleoceanographic changes and benthic extinctions at the end of Palaeocene. Nature 353:225–229

    Article  Google Scholar 

  • Koch PL, Zachos JC, Dettman DL (1995) Stable isotope stratigraphy and paleoclimatology of the Paleogene Bighorn Basin (Wyoming, USA). Palaeogeogr Palaeoclimatol Palaeoecol 115:61–89

    Article  Google Scholar 

  • Li MH, Fang XM, Galy A, Wang HL, Song XS (2020) Wang XX (2020) Hydrated sulfate minerals (bloedite and polyhalite): formation and paleoenvironmental implications. Carbonates Evaporites 35:126. https://doi.org/10.1007/s13146-020-00660-y

    Article  Google Scholar 

  • Liu CL, Chen YZ, Chen WS, Jiao PC, Wang ML, Li SD (2006) Studies of fluid inclusions in glauberite of Middle-Upper Pleistocene strata and their paleoclimatic significance in Lop Nur Salty lake, Xinjiang, NW China. Acta Mineral Sin 26:93–98

    Google Scholar 

  • Liu CL, Jiao PC, Wang ML, Chen YZ (2007) Sedimentation of glauberite and its effect on potash deposits formation in Lop Nur saltlake, Xinjiang, China. Miner Depos 26:22–329

    Google Scholar 

  • Liu CL, Jiao PC, Chen YZ, Wang ML (2008) Late Pleistocene mirabilite deposition in the Lop Nur Saline Lake, Xinjiang and its paleoclimate implication. Acta Geosci Sin 29:397–404

    Google Scholar 

  • Lowenstein TK, Li JR, Brown C, Roberts S, Ku TL, Luo SD, Yang WB (1999) 200 k. y. paleoclimate record from Death Valley salt core. Geology 27:3–6

    Article  Google Scholar 

  • Lowensten TK, Lawrence AH (1985) Criteria for the recongnition of salt-pan evaporates. Sedimentology 32:627–644

    Article  Google Scholar 

  • Lunt DJJ, Valdes PJ, Jones TD, Ridgwell A (2010) CO2-driven ocean circulation changes as an amplifier of Paleocene-Eocene Thermal maximum hydrate destabilization. Geology 38:875–878

    Article  Google Scholar 

  • McElwain JC, Beerling DJ, Woodward FI (1999) Fossil plants and global warming at the Triassic-Jurassic boundary. Science 285:1386–2139

    Article  Google Scholar 

  • Mees F (1999) Textural feature of Holocene perennial saline lake deposits of the Taoudenni-Agorgott basin, northern Mali. Sediment Geol 127:65–84

    Article  Google Scholar 

  • Meng FW, Galamay AR, Yang CH, Li YP, Zhuo QG (2014) The major composition of a middle-late Eocene salt lake in the Yunying depression of Jianghan Basin of Middle China based on analyses of fluid inclusions in halite. J Asia Earth Sci 85:97–105

    Article  Google Scholar 

  • Ortí F (2000) Unidades glauberíticas del Terciario Ibérico: nuevas aportaciones. Rev Soc Geol Esp 13:227–249

    Google Scholar 

  • Ortí F, Gündogan I, Helvaci C (2002) Sodium sulphate deposits of Neogene age: the Kirmir Formation, Beypazari Basin. Turk Sediment Geol 146:305–333

    Article  Google Scholar 

  • Qi Y, Ju YW, Huang C, Zhu HJ, Bao Y, Wu JG, Meng SZ, Chen WG (2019) Influences of organic matter and kaolinite on pore structures of transitional organic-rich mudstone with an emphasis on S2 controlling specific surface area. Fuel 237:860–873

    Article  Google Scholar 

  • Smoot JP, Lowenstein TK (1991) Depositional environments of non-marine evaporates. Dev Sedimentol 50:189–347

    Article  Google Scholar 

  • Timofeeff MN, Lowenstein TK, Blackburn WH (2000) ESEM-EDS: an improved technique for major element chemical analysis of fluid inclusions. Chem Geol 164:171–181

    Article  Google Scholar 

  • Timofeeff MN, Lowenstein TK, Brennan ST, Demicco RV, Zimmermann H, Horita J, Borstel LE (2001) Evaluating seawater chemistry from fluid inclusions in halite: examples from modern marine and nonmarine environments. Geochim Cosmochim Acta 65:2293–2300

    Article  Google Scholar 

  • Veizer J, Godderis Y, FrancËois LM (2000) Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature 408:698–701

    Article  Google Scholar 

  • Wang CL, Huang H, Liu CL, Wang JY, Xu HM, Yu XC, Gao C, Meng LY, Cai PR, Yan K, Fang JL (2018) Geological features and metallogenic model of K-and Li-rich brine ore field in the Jiangling Depression. Acta Geol Sin 92:1630–1646

    Google Scholar 

  • Wang CL, Liu LH, Wang JY, Yu XC, Yan K (2021) Micron-nanometer evaporite mineral compositions in the Jiangling Depression, Jianghan Basin, China, by means of scanning electron microscopy. J Nanosci Nanotechnol 16(1):310–325

    Article  Google Scholar 

  • Wei DY (1988) Glauberite in saline deposit and its origin. Miner Rock 8:92–98

    Google Scholar 

  • Xu B, Li JM, Wu ZP, Zhang YS (2020) Sedimentary cycles of evaporites and their application in sequence division in the upper member of the Xiaganchaigou Formation in Yingxi Area, Southwestern Qaidam Basin, China. Carbonates Evaporites 35:66. https://doi.org/10.1007/s13146-020-00603-7

    Article  Google Scholar 

  • Yang QT (1989) The origin and sedimentary environment analysis of glauberite. Acta Sedimentol Sin 7:137–141

    Google Scholar 

  • Yu XC, Liu CL, Wang CL, Xu HM (2018) Provenance of rift sediments in a composite basin-mountain system: constraints from petrography, whole-rock geochemistry, and detrital zircon U-Pb geochronology of the Paleocene Shashi Formation, southwestern Jianghan Basin, central China. Int J Earth Sci 107:2741–2766

    Article  Google Scholar 

  • Zamagni J, Mutti M, Kosir A (2012) The evolution of mid Paleocene-early Eocene coral communities: how to survive during rapid global warming. Palaeogeogr Palaeoclimatol Palaeoecol 317–318:48–65

    Article  Google Scholar 

  • Zhao HT, Liu CL, Jiao PC, Sun XH, Li DX (2014) Morphology characteristics and influential factors of glauberite growth from Lop Nur Salt Lake, China. Acta Mineral Sin 34:97–106

    Google Scholar 

  • Zhao YJ, Liu CL, Ding T, Gonzalez LA, Li ZQ, Wang MQ, Wang LC (2020) Zhu ZJ (2020) Origin and depositional paleoenvironment of Triassic polyhalite in the Jialingjiang formation, Sichuan basin. Carbonates Evaporites 35:64. https://doi.org/10.1007/s13146-020-00596-3

    Article  Google Scholar 

  • Zhu HJ, Ju YW, Huang C, Han K, Qi Y, Meng YS, Yu K, Feng HY, Li WY, Ju LT, Qian J (2018) Pore structure variations across structural deformation of Silurian Longmaxi Shale: an example from the Chuandong Thrust-Fold Belt. Fuel 241:914–932

    Article  Google Scholar 

Download references

Acknowledgements

We thank Chenglin Liu, Donghong Li and Peng Chen for providing assistance, and the State Key Laboratory for Continental Tectonics and Dynamics, Institute of Geology, Chinese Academy of Geological Sciences and the China National Research Center for performing the geochemical analyses. This research was supported by the NSF China (Nos. U20A2092, 42002106, 41907262 and 41502089), the Central Welfare Basic Scientific Research Business Expenses (Nos. KK2005 and KK2016), the National Basic Research Program of China (973 Program) (No. 2011CB403007), and the China Geological Survey (No. DD20190606).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Liu, L., Yan, K. et al. Morphological characteristics and growth influencing factors of Paleocene glauberite minerals in Jiangling Depression, China. Carbonates Evaporites 37, 24 (2022). https://doi.org/10.1007/s13146-022-00767-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-022-00767-4

Keywords

Navigation