Skip to main content
Log in

The contribution of atmospheric deposition of cadmium and lead to their accumulation in rice grains

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Purpose

Over-accumulation of cadmium and lead in rice grain is a global concern as it has adverse health impacts. Atmospheric deposition is an important source of heavy metal accumulation in soil, but contribution to crops has not been quantified and the mechanisms of foliar Cd and Pb uptake via the stomata of rice leaves exposed to atmospheric fallout are unclear.

Methods

To quantify the contribution of atmospheric deposition on Cd and Pb accumulation in rice grains, a rice pot experiment with four exposure treatments (T1, all day exposure without geotextile membranes; T2, all day exposure with geotextile membranes; T3, daytime exposure with geotextile membranes; and T4, night exposure with geotextile membranes) using severely (ZZ) and moderately (XT) polluted soils was conducted.

Results

Cd content in shoots and roots was T1 > T2, T3 > T4 in XT soils, and T1 > T2, T4 > T3 in ZZ soils, while Pb content in both soils was T1 > T2, and T4 > T3. Cd and Pb contents in rice grains showed the same trend. Using the isotope ratios tracing method (114/111Cd, 112/111Cd, and 207/206Pb, 208/206Pb), it can be concluded that the contribution of atmospheric deposition to rice grains was quantified as 63.55% and 18.01% for Cd, and 27.69% and 41.13% for Pb in XT and ZZ soils, respectively.

Conclusions

Foliar uptake atmospheric deposition had substantial effect on Cd and Pb accumulation in rice grains and the control of heavy metal foliar uptake should be paid more attention to maintain rice safety production.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baycu G, Gevrek-Kürüm N, Moustaka J et al (2016) Cadmium-zinc accumulation and photosystem II responses of noccaea caerulescens to Cd and Zn exposure. Environ Sci Pollut Res 24(3):2840–2850

    Article  CAS  Google Scholar 

  • Bermudez GMA, Jasan R, Plá R et al (2012) Heavy metals and trace elements in atmospheric fall-out: Their relationship with topsoil and wheat element composition. J Hazard Mater 213–214:447–456

    Article  PubMed  CAS  Google Scholar 

  • Bi XY, Feng XB, Yang YG et al (2009) Allocation and source attribution of lead and cadmium in maize (Zea mays L.) impacted by smelting emissions. Environ Pollut 157(3):834–839

    Article  CAS  PubMed  Google Scholar 

  • Bohdálková L, Novák M, Krachler M et al (2020) Cadmium contents of vertically and horizontally deposited winter precipitation in central Europe: spatial distribution and long-term trends. Environ Pollut 265:114949

    Article  PubMed  CAS  Google Scholar 

  • Bu Q, Lv T, Shen H et al (2014) Regulation of Drought Tolerance by the F-Box Protein MAX2 in Arabidopsis. Plant Physiol 164(1):424–439. https://doi.org/10.1104/pp.113.226837

  • Canepari S, Perrino C, Olivieri F et al (2008) Characterisation of the traffic sources of pm through size-segregated sampling, sequential leaching and icp analysis. Atmos Environ 42(35):8161–8175

    Article  CAS  Google Scholar 

  • Cao XY, Tan CY, Wu LH et al (2020) Atmospheric deposition of cadmium in an urbanized region and the effect of simulated wet precipitation on the uptake performance of rice. Sci Total Environ 700:134513

    Article  CAS  PubMed  Google Scholar 

  • De Temmerman L, Ruttens A, Waegeneers N (2012a) Impact of atmospheric deposition of As, Cd and Pb on their concentration in carrot and celeriac. Environ Pollution 166:187–195

    Article  CAS  Google Scholar 

  • Du Y, Hu XF, Wu XH et al (2013) Affects of mining activities on Cd pollution to the paddy soils and rice grain in Hunan province, Central South China. Environ Monit Assess 185(12):9843–9856

    Article  CAS  PubMed  Google Scholar 

  • Feng JF, Wang YX, Zhao J et al (2011) Source attributions of heavy metals in rice plant along highway in Eastern China. J Environ Sci 23(7):1158–1164

    Article  CAS  Google Scholar 

  • Feng WL, Guo ZH, Peng C et al (2018) Modelling mass balance of cadmium in paddy soils under long term control scenarios. Environ Science: Processes & Impacts 20:1158–1166

    CAS  Google Scholar 

  • Feng WL, Guo ZH, Xiao XY et al (2019) Atmospheric deposition as a source of cadmium and lead to soil-rice system and associated risk assessment. Ecotoxicol Environ Saf 180:160–167

    Article  CAS  PubMed  Google Scholar 

  • Fernández V, Eichert T (2009) Uptake of hydrophilic solutes through plant leaves: current state of knowledge and perspectives of foliar fertilization. CRC Crit Rev Plant Sci 28(1–2):36–68

    Article  CAS  Google Scholar 

  • Fernández-Olmo I, Puente M, Montecalvo L et al (2014) Source contribution to the bulk atmospheric deposition of minor and trace elements in a Northern Spanish coastal urban area. Atmos Res 145–146:80–91

    Article  CAS  Google Scholar 

  • Gajbhiye T, Pandey SK, Kim KH et al (2016) Airborne foliar transfer of pm bound heavy metals in cassia siamea: a less common route of heavy metal accumulation. Sci Total Environ 573:123–130

    Article  CAS  PubMed  Google Scholar 

  • Gao PP, Xue PY, Dong JW et al (2021) Contribution of PM2.5-Pb in atmospheric fallout to Pb accumulation in Chinese cabbage leaves via stomata. J Hazard Mater 407:124356

    Article  CAS  PubMed  Google Scholar 

  • Gao PP, Zhang XM, Xue PY et al (2022) Mechanism of Pb accumulation in Chinese cabbage leaves: Stomata and trichomes regulate foliar uptake of Pb in atmospheric PM2.5. Environ Pollut 293:118585

    Article  CAS  PubMed  Google Scholar 

  • Guan QY, Wang FF, Xu CQ et al (2018) Source apportionment of heavy metals in agricultural soil based on PMF: a case study in Hexi Corridor, northwest China. Chemosphere 193:189–197

    Article  CAS  PubMed  Google Scholar 

  • Hou QY, Yang ZF, Ji JF et al (2014) Annual net input fluxes of heavy metals of the agro-ecosystem in the Yangtze River delta, China. J Geochemical Explor 139:68–84

    Article  CAS  Google Scholar 

  • Hu X, Zhang Y, Luo J et al (2011) Accumulation and quantitative estimates of airborne lead for a wild plant (Aster subulatus). Chemosphere 82(10):1351–1357

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Deng MH, Wu SF et al (2018) A modified receptor model for source apportionment of heavy metal pollution in soil. J Hazard Mater 354:161–169

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Li TQ, Wu CX et al (2015) An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils. J Hazard Mater 299:540–549

    Article  CAS  PubMed  Google Scholar 

  • Lei HL, Cong WY, Cai ZL et al (2021) The key processes and influencing factors of selenium absorption by plant roots and leaves. J Plant Nutr Fertilizers 155(08):1456–1467 ((in Chinese))

    Google Scholar 

  • Li H, Luo N, Yan WL et al (2017) Cadmium in rice: Transport mechanisms, influencing factors, and minimizing measures. Environ Pollut 224:622–630

    Article  CAS  PubMed  Google Scholar 

  • Jaeckels JM, Bae MS, Schauer JJ (2007) Positive matrix factorization (PMF) analysis of molecular marker measurements to quantify the sources of organic aerosols. Environ Sci Technol 41(16):5763–5769

    Article  CAS  PubMed  Google Scholar 

  • Kaier H (2015) Stomatal uptake of mineral particles from a sprayed suspension containing an organosilicone surfactant. J Plant Nutr Soil Sci 177(6):869–874

    Google Scholar 

  • Keller C, Rizwan BM, Davidian C et al (2014) Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 µm Cu. Planta 241(4):847–860

    Article  PubMed  CAS  Google Scholar 

  • Lee PK, Choi BY, Kang MJ (2015) Assessment of mobility and bio-availability of heavy metals in dry depositions of Asian dust and implications for environmental risk. Chemosphere 119:1411–1421

    Article  CAS  PubMed  Google Scholar 

  • Li F, Huang JH, Zeng GM et al (2013) Spatial risk assessment and sources identification of heavy metals in surface sediments from Dongting Lake, Middle China. J Geochem Explor 132:75–83

    Article  CAS  Google Scholar 

  • Liu HL, Zhou J, Li M et al (2019a) Study of the bioavailability of heavy metals from atmospheric deposition on the soil-pakchoi (Brassica chinensis L.) system. J Hazard Mater 362:9–12

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Wang DQ, Song B et al (2019b) Source apportionment of Pb in a rice-soil system using field monitoring and isotope composition analysis. J Geochem Explor 204:83–89

    Article  CAS  Google Scholar 

  • Liu ZP, Zhang QF, Han TQ et al (2016) Heavy Metal Pollution in a Soil-Rice System in the Yangtze River Region of China. Int J Environ Res Public Health 13(1):1–16

    Google Scholar 

  • Louie PKK, Watson JG, Chow JC et al (2005) Seasonal characteristics and regional transport of PM2.5 in Hong Kong. Atmos Environ 39(9):1695–1710

    CAS  Google Scholar 

  • Luo L, Ma YB, Zhang SZ et al (2009) An inventory of trace element inputs to agricultural soils in China. J Environ Manage 90:2524–2530

    Article  CAS  PubMed  Google Scholar 

  • Majer P, Hideg éva (2012) Existing antioxidant levels are more important in acclimation to supplemental UV-B irradiation than inducible ones: Studies with high light pretreated tobacco leaves. Emirates J Food Agric 24(6):598–606

    Article  Google Scholar 

  • Mansfield TA, Majernik O (1970) Can stomata play a part in protecting plants against air pollutants?. Environ Pollut 1(2):149–154. https://doi.org/10.1016/0013-9327(70)90015-7

  • Mekonnen DW, Flügge UI, Ludewig F (2016) Gamma-aminobutyric acid depletion affects stomata closure and drought tolerance of Arabidopsis thaliana. Plant Sci 245:25–34

    Article  CAS  PubMed  Google Scholar 

  • Melotto M, Zhang L, Oblessuc PR et al (2017) Stomatal defense a decade later. Plant Physiol 174:561–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawidis T, Krystallidis P, Veros D et al (2012) A study of air pollution with heavy metals in Athens city and Attica basin using evergreen trees as biological indicators. Biol Trace Elem Res 148:396–408

    Article  CAS  PubMed  Google Scholar 

  • Schreck E, Dappe V, Sarret G et al (2014) Foliar or root exposures to smelter particles: Consequences for lead compartmentalization and speciation in plant leaves. Sci Total Environ 476–477:667–676

    Article  PubMed  CAS  Google Scholar 

  • Schreck E, Foucault Y, Geret F et al (2011) Influence of soil ageing on bioavailability and ecotoxicity of lead carried by process waste metallic ultrafine particles. Chemosphere, 85 – 10, pp 1555–1562

    Google Scholar 

  • Schreck E, Foucault Y, Sarret G et al (2012) Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: Mechanisms involved for lead. Sci Total Environ 427–428:253–262

    Article  PubMed  CAS  Google Scholar 

  • Shahid M, Dumat C, Khalid S et al (2017) Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater 325:36–58

    Article  CAS  PubMed  Google Scholar 

  • Sharma RK, Agrawal M, Marshall FM (2008) Heavy metal (Cu, Zn, Cd and Pb) contamination of vegetables in urban india: a case study in varanasi. Environ Pollut 154(2):254–263

    Article  CAS  PubMed  Google Scholar 

  • Tang WZ, Shan BQ, Zhang H et al (2010) Heavy metal sources and associated risk in response to agricultural intensification in the estuarine sediments of Chaohu Lake Valley, East China. J Hazard Mater 176(1–3):945–951

    Article  CAS  PubMed  Google Scholar 

  • Temmerman LD, Ruttens A, Waegeneers N (2012) Impact of atmospheric deposition of As, Cd and Pb on their concentration in carrot and celeriac. Environ Pollut 166:187–195

    Article  PubMed  CAS  Google Scholar 

  • Tian HZ, Zhu CY, Gao JJ et al (2015) Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in china: historical trend, spatial distribution, uncertainties, and control policies. Atmos Chem Phys 15(8):12107–12166

    Google Scholar 

  • Tomasevic M, Anicic M (2010) Trace element content in urban tree leaves and SEM-EDAX characterization of deposited particles. FU Phys Chem Technol 8:1–13

    Article  CAS  Google Scholar 

  • Uzu G, Sobanska S, Sarret G et al (2010) Foliar Lead Uptake by Lettuce Exposed to Atmospheric Fallouts. Environ Sci Technol 44(3):1036–1042. https://doi.org/10.1021/es902190u

  • Wong CSC, Li XD (2004) Pb contamination and isotopic composition of urban soils in Hong Kong. Sci Total Environ 319(1–3):185–195

    Article  CAS  PubMed  Google Scholar 

  • Xiong DL, Douthe C, Flexas J (2018) Differential coordination of stomatal conductance, mesophyll conductance, and leaf hydraulic conductance in response to changing light across species. Plant Cell Environ 41:436–450

    Article  CAS  PubMed  Google Scholar 

  • Yin J, Harrison R, Chen Q et al (2010) Source apportionment of fine particles at urban background and rural sites in the UK atmosphere. Atmos Environ 44(6):841–851

    Article  CAS  Google Scholar 

  • Zhang YL, Zhang SX, Zhu FP et al (2018) Atmospheric heavy metal deposition in agro-ecosystems in China. Environ Sci Pollut Res 25:5822–5831

    Article  CAS  Google Scholar 

  • Zhou J, Du BY, Liu HL et al (2020) The bioavailability and contribution of the newly deposited heavy metals (copper and lead) from atmosphere to rice (oryza sativa L.). J Hazard Mater 384:121285

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of the National Natural Science Foundation of China (NSFC) (No.42007143), Natural Science Foundation of Hunan Province, China (No. 2020JJ5224), Scientific Research Fund of Hunan Provincial Education Department, China (No.19B250), and the Science Foundation for Young Scholars of Hunan Agricultural University (No.19QN37).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianwei Peng or Ying Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. This manuscript has not been published or presented elsewhere in part or in entirety and is not under consideration by another journal. We have read and understood your journal’s policies, and we believe that neither the manuscript nor the study violates any of these. There are no conflicts of interest to declare.

Additional information

Responsible Editor: Jian Feng Ma.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 201 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Xu, Z., Peng, J. et al. The contribution of atmospheric deposition of cadmium and lead to their accumulation in rice grains. Plant Soil 477, 373–387 (2022). https://doi.org/10.1007/s11104-022-05429-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-022-05429-x

Keywords

Navigation