Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhanced nanofluidic transport in activated carbon nanoconduits

Abstract

Carbon has emerged as a unique material in nanofluidics, with reports of fast water transport, molecular ion separation and efficient osmotic energy conversion. Many of these phenomena still await proper rationalization due to the lack of fundamental understanding of nanoscale ionic transport, which can only be achieved in controlled environments. Here we develop the fabrication of ‘activated’ two-dimensional carbon nanochannels. Compared with nanoconduits with ‘pristine’ graphite walls, this enables the investigation of nanoscale ionic transport in great detail. We show that activated carbon nanochannels outperform pristine channels by orders of magnitude in terms of surface electrification, ionic conductance, streaming current and (epi-)osmotic currents. A detailed theoretical framework enables us to attribute the enhanced ionic transport across activated carbon nanochannels to an optimal combination of high surface charge and low friction. Furthermore, this demonstrates the unique potential of activated carbon for energy harvesting from salinity gradients with single-pore power density across activated carbon nanochannels, reaching hundreds of kilowatts per square metre, surpassing alternative nanomaterials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nanofluidic 2D channels and measurement setup.
Fig. 2: Ionic transport across pristine and activated channels.
Fig. 3: Conductivity enhancement for pristine and activated channels.
Fig. 4: Osmotic energy performance of pristine and activated channels.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information files. Source data are provided with this paper and are available at https://figshare.com/s/2aabcab85d33123a3af3.

References

  1. Bocquet, L. Nanofluidics coming of age. Nat. Mater. 19, 254–256 (2020).

    Article  CAS  Google Scholar 

  2. Faucher, S. et al. Critical knowledge gaps in mass transport through single-digit nanopores: a review and perspective. J Phys. Chem. C 123, 21309–21326 (2019).

    Article  CAS  Google Scholar 

  3. Kavokine, N., Netz, R. & Bocquet, L. Fluids at the nanoscale: from continuum to subcontinuum transport. Annu. Rev. Fluid Mech. 53, 377–410 (2021).

    Article  Google Scholar 

  4. Radha, B. et al. Molecular transport through capillaries made with atomic-scale precision. Nature 538, 222–225 (2016).

    Article  CAS  Google Scholar 

  5. Nair, R. R. et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335, 442–444 (2012).

    Article  CAS  Google Scholar 

  6. Ji, J. et al. Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs. Adv. Funct. Mater. 27, 1603623 (2017).

    Article  CAS  Google Scholar 

  7. Jijo, A. et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12, 546 (2017).

    Article  CAS  Google Scholar 

  8. Yang, Q. et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Nat. Mater. 16, 1198–1202 (2017).

    Article  CAS  Google Scholar 

  9. Quan, X. et al. Fast water transport in graphene nanofluidic channels. Nat. Nanotechnol. 13, 238–245 (2018).

    Article  CAS  Google Scholar 

  10. Ghanbari, H. & Esfandiar, A. Ion transport through graphene oxide fibers as promising candidate for blue energy harvesting. Carbon 165, 267–274 (2020).

    Article  CAS  Google Scholar 

  11. Liu, X. et al. Power generation by reverse electrodialysis in a single-layer nanoporous membrane made from core–rim polycyclic aromatic hydrocarbons. Nat. Nanotechnol. 15, 307–312 (2020).

    Article  CAS  Google Scholar 

  12. Salanne, M. et al. Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1, 16070 (2016).

    Article  CAS  Google Scholar 

  13. Siria, A., Bocquet, M.-L. & Bocquet, L. New avenues for the large-scale harvesting of blue energy. Nat. Rev. Chem. 1, 0091 (2017).

    Article  CAS  Google Scholar 

  14. Macha, M., Marion, S., Nandigana, V. V. & Radenovic, A. 2D materials as an emerging platform for nanopore-based power generation. Nat. Rev. Mater. 4, 588–605 (2019).

    Article  CAS  Google Scholar 

  15. Mouhat, F., Coudert, F. X. & Bocquet, M.-L. Structure and chemistry of graphene oxide in liquid water from first principles. Nat. Commun. 11, 1566 (2020).

    Article  CAS  Google Scholar 

  16. Mouterde, T. et al. Molecular streaming and its voltage control in ångström-scale channels. Nature 567, 87–90 (2019).

    Article  CAS  Google Scholar 

  17. Ferrari, A. C. & Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095 (2000).

    Article  CAS  Google Scholar 

  18. Dresselhaus, M. S., Jorio, A. & Saito, R. Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy. Annu. Rev. Condens. Matter Phys. 1, 89–10 (2010).

    Article  CAS  Google Scholar 

  19. Nakhara, M. & Sanada, Y. Modification of pyrolytic graphite surface with plasma irradiation. J. Mater. Sci. 1, 1327–1333 (1993).

    Article  Google Scholar 

  20. Thiele, C. et al. Electron-beam-induced direct etching of graphene. Carbon 64, 84–91 (2013).

    Article  CAS  Google Scholar 

  21. Yuzvinsky, T. D., Fennimore, A. M., Mickelson, W., Esquivias, C. & Zettl, A. Precision cutting of nanotubes with a low-energy electron beam. Appl. Phys. Lett. 86, 053109 (2005).

    Article  CAS  Google Scholar 

  22. Levita, G., Restuccia, P. & Righi, M. C. Graphene and MoS2 interacting with water: a comparison by ab initio calculations. Carbon 107, 878–884 (2016).

    Article  CAS  Google Scholar 

  23. Hueso, J. L., Espinosa, J. P., Caballeroa, A., Cotrino, J. & Gonzalez-Elipe, A. R. XPS investigation of the reaction of carbonwith NO, O2, N2 and H2O plasmas. Carbon 45, 89–96 (2007).

    Article  CAS  Google Scholar 

  24. Grazia, G. et al. Water at charged interfaces. Nat. Rev. Chem. 5, 466–485 (2021).

    Article  CAS  Google Scholar 

  25. Gopinadhan, K. et al. Complete steric exclusion of ions and proton transport through confined monolayer water. Science 363, 145–148 (2019).

    Article  CAS  Google Scholar 

  26. Siria, A. et al. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 494, 455–458 (2013).

    Article  CAS  Google Scholar 

  27. Bocquet, L. & Charlaix, E. Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 39, 1073–1095 (2010).

    Article  CAS  Google Scholar 

  28. Grosjean, B., Bocquet, M. L. & Vuilleumier, R. Versatile electrification of two-dimensional nanomaterials in water. Nat. Commun. 10, 1656 (2019).

    Article  CAS  Google Scholar 

  29. Secchi, E., Niguès, A., Jubin, L., Siria, A. & Bocquet, L. Scaling behavior for ionic transport and its fluctuations in individual carbon nanotubes. Phys. Rev. Lett. 116, 154501 (2016).

    Article  CAS  Google Scholar 

  30. Mouterde, T. & Bocquet, L. Interfacial transport with mobile surface charges and consequences for ionic transport in carbon nanotubes. Eur. Phys. J. E 41, 148 (2018).

    Article  CAS  Google Scholar 

  31. Maduar, S. R., Belyaev, A. V., Lobaskin, V. & Vinogradova, O. I. Electrohydrodynamics near hydrophobic surfaces. Phys. Rev. Lett. 114, 118301 (2015).

    Article  CAS  Google Scholar 

  32. Manghi, M., Palmeri, J., Yazda, K., Henn, F. & Jourdain, V. Role of charge regulation and flow slip on the ionic conductance of nanopores: an analytical approach. Phys. Rev. E 98, 012605 (2018).

    Article  CAS  Google Scholar 

  33. Biesheuvel, P. M. & Bazant, M. Z. Analysis of ionic conductance of carbon nanotubes. Phys. Rev. E 94, 050601 (2016).

    Article  CAS  Google Scholar 

  34. Uematsu, Y., Netz, R. R., Bocquet, L. & Bonthuis, D. J. Crossover of the power-law exponent for carbon nanotube conductivity as a function of salinity. J. Phys. Chem. B 122, 2992–2997 (2018).

    Article  CAS  Google Scholar 

  35. Joly, L., Ybert, C., Trizac, E. & Bocquet, L. Liquid friction on charged surfaces: from hydrodynamic slippage to electrokinetics. J. Chem. Phys. 125, 204716 (2006).

    Article  CAS  Google Scholar 

  36. Xie, Y., Fu, L., Niehaus, T. & Joly, L. Liquid-solid slip on charged walls: the dramatic impact of charge distribution. Phys. Rev. Lett. 125, 014501 (2020).

    Article  CAS  Google Scholar 

  37. Squires, T. M. Electrokinetic flows over inhomogeneously slipping surfaces. Phys. Fluids 20, 092105 (2008).

    Article  CAS  Google Scholar 

  38. Jiandong, F. et al. Single-layer MoS2 nanopores as nanopower generators. Nature 536, 197–200 (2016).

    Article  CAS  Google Scholar 

  39. Lin, C.-Y., Combs, C., Su, Y.-S., Yeh, L.-H. & Siwy, S. Rectification of concentration polarization in mesopores leads to high conductance ionic diodes and high performance osmotic power. J. Am. Chem. Soc. 141, 3691–3698 (2019).

    Article  CAS  Google Scholar 

  40. Ma, T., Balanzat, E., Janot, J.-M. & Blame, S. Nanopore functionalized by highly charged hydrogels for osmotic energy harvesting. ACS Appl. Mater. Interfaces 11, 12578–12585 (2019).

    Article  CAS  Google Scholar 

  41. Gao, M., Tsai, P.-C., Su, Y.-S., Peng, P.-H. & Yeh, L.-H. Single mesopores with high surface charges as ultrahigh performance osmotic power generators. Small 16, 2006013 (2020).

    Article  CAS  Google Scholar 

  42. Xiao, F. et al. A general strategy to simulate osmotic energy conversion in multi-pore nanofluidic systems. Mater. Chem. Front. 2, 935–941 (2018).

    Article  CAS  Google Scholar 

  43. Gao, J. et al. Understanding the giant gap between single-pore- and membrane-based nanofluidic osmotic power generators. Small 215, 1804279 (2019).

    Article  CAS  Google Scholar 

  44. Fumagalli, L. et al. Anomalously low dielectric constant of confined water. Science 360, 1339–1342 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

L.B. thanks R. Netz and B. Rotenberg for fruitful discussions. We thank the Institut des Matériaux de Paris Centre (IMPC FR2482) for servicing the XPS instrumentation, as well as A. Walton for his help with XPS measurements and valuable discussions. L.B. acknowledges funding from the EU H2020 Framework Programme/ERC Advanced Grant agreement number 785911-Shadoks and ANR project Neptune. A.S. acknowledges funding from the EU H2020 Framework Programme/ERC Starting Grant agreement number 637748-NanoSOFT. L.B. and A.S. acknowledge support from the Horizon 2020 programme through Grant number 899528-FET-OPEN-ITS-THIN. K.S.V. acknowledges the Marie Curie Individual Fellowship from the EU H2020 Framework Programme, through grant number 836434, GraFludicDevices. A.K. acknowledges the Ramsay Memorial Fellowship and also funding from the Royal Society research grant RGS/R2/202036. B.R. acknowledges the Royal Society fellowship and funding from the EU H2020 Framework Programme/ERC Starting Grant number 852674 AngstroCAP. This work has received the support of the Institut Pierre-Gilles de Gennes (programme ANR-10-IDEX-0001-02 PSL and ANR-10-LABX-31).

Author information

Authors and Affiliations

Authors

Contributions

L.B. and A.S. designed and directed the project. T.E. and K.S.V. contributed equally; they fabricated the devices, with input from A.N. and A.S. Device fabrication and characterization was contributed by B.R. and A.K. With input from L.B. and A.S., T.E. and K.S.V. performed experiments and carried out analysis. L.B. performed the theoretical analysis. L.B., K.S.V., T.E. and A.S wrote the manuscript. All authors contributed to discussions.

Corresponding authors

Correspondence to Alessandro Siria or Lydéric Bocquet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Rohit Karnik and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–19, discussion and Tables 1–15.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emmerich, T., Vasu, K.S., Niguès, A. et al. Enhanced nanofluidic transport in activated carbon nanoconduits. Nat. Mater. 21, 696–702 (2022). https://doi.org/10.1038/s41563-022-01229-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01229-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing