Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium

Abstract

The reaction of carbon dioxide with hydroxide to form carbonate in near-neutral or alkaline medium severely limits the energy and carbon efficiency of CO2 electroreduction. Here we show that by suppression of the otherwise predominant hydrogen evolution using alkali cations, efficient CO2 electroreduction can be conducted in acidic medium, overcoming the carbonate problem. The cation effects are general for three typical catalysts including carbon-supported tin oxide, gold and copper, leading to Faradaic efficiency as high as 90% for formic acid and CO formation. Our analysis suggests that hydrated alkali cations physisorbed on the cathode modify the distribution of electric field in the double layer, which impedes hydrogen evolution by suppression of migration of hydronium ions while at the same time promoting CO2 reduction by stabilization of key intermediates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Performance of CO2 reduction in acidic solutions containing K+ ions.
Fig. 2: Comparison of CO2 electroreduction in acidic, near-neutral and alkaline media.
Fig. 3: Estimation of energy consumption for sustainable CO2 electroreduction.
Fig. 4: Cation effects on HER and CO2 reduction.
Fig. 5: Cation effects on electric field distribution.
Fig. 6: Simulation of local pH effect.

Similar content being viewed by others

Data availability

Data that support the findings of this study can be found in the article and the Supplementary information. Source data are available from the corresponding author upon request. Datasets for Figs. 16 can be found in Zenodo53.

References

  1. Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2017).

    Article  CAS  Google Scholar 

  2. Verma, S. et al. Insights into the low overpotential electroreduction of CO2 to CO on a supported gold catalyst in an alkaline flow electrolyzer. ACS Energy Lett. 3, 193–198 (2018).

    Article  CAS  Google Scholar 

  3. Dinh, C.-T., García de Arquer, F. P., Sinton, D. & Sargent, E. H. High rate, selective, and stable electroreduction of CO2 to CO in basic and neutral media. ACS Energy Lett. 3, 2835–2840 (2018).

    Article  CAS  Google Scholar 

  4. Zhang, B. A., Ozel, T., Elias, J. S., Costentin, C. & Nocera, D. G. Interplay of homogeneous reactions, mass transport, and kinetics in determining selectivity of the reduction of CO2 on gold electrodes. ACS Cent. Sci. 5, 1097–1105 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rabinowitz, J. A. & Kanan, M. W. The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem. Nat. Commun. 11, 5231 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wuttig, A., Yaguchi, M., Motobayashi, K., Osawa, M. & Surendranath, Y. Inhibited proton transfer enhances Au-catalyzed CO2-to-fuels selectivity. Proc. Natl Acad. Sci. USA 113, E4585–E4593 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Varela, A. S. et al. pH effects on the selectivity of the electrocatalytic CO2 reduction on graphene-embedded Fe–N–C motifs: bridging concepts between molecular homogeneous and solid-state heterogeneous catalysis. ACS Energy Lett. 3, 812–817 (2018).

    Article  CAS  Google Scholar 

  8. Ozden, A. et al. Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene. Joule 5, 706–719 (2021).

    Article  CAS  Google Scholar 

  9. Hori, Y. in Modern Aspects of Electrochemistry (eds Vayenas, C. G. et al.) 89–189 (Springer, 2008).

  10. Zhu, D. D., Liu, J. L. & Qiao, S. Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 28, 3423–3452 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Ma, M. et al. Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs. Energy Environ. Sci. 13, 977–985 (2020).

    Article  CAS  Google Scholar 

  12. Wang, J., Xu, F., Jin, H., Chen, Y. & Wang, Y. Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv. Mater. 29, 1605838 (2017).

    Article  CAS  Google Scholar 

  13. Shao, Y., Xiao, X., Zhu, Y.-P. & Ma, T.-Y. Single-crystal cobalt phosphate nanosheets for biomimetic oxygen evolution in neutral electrolytes. Angew. Chem. Int. Ed. Engl. 58, 14599–14604 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Ringe, S. et al. Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on Gold. Nat. Commun. 11, 33 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bondue, C. J., Graf, M., Goyal, A. & Koper, M. T. M. Suppression of hydrogen evolution in acidic electrolytes by electrochemical CO2 reduction. J. Am. Chem. Soc. 143, 279–285 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Huang, J. E. et al. CO2 electrolysis to multicarbon products in strong acid. Science 372, 1074–1078 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Monteiro, M. C. O. et al. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal. 4, 654–662 (2021).

    Article  CAS  Google Scholar 

  18. Resasco, J. et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Singh, M. R., Kwon, Y., Lum, Y., Ager, J. W. & Bell, A. T. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J. Am. Chem. Soc. 138, 13006–13012 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Ringe, S. et al. Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci. 12, 3001–3014 (2019).

    Article  CAS  Google Scholar 

  21. Xia, C. et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4, 776–785 (2019).

    Article  CAS  Google Scholar 

  22. Liu, L.-X. et al. Tuning Sn3O4 for CO2 reduction to formate with ultra-high current density. Nano Energy 77, 105296 (2020).

    Article  CAS  Google Scholar 

  23. Gu, J., Hsu, C.-S., Bai, L., Chen, H. M. & Hu, X. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 364, 1091–1094 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Li, F. et al. Molecular tuning of CO2-to-ethylene conversion. Nature 577, 509–513 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. García de Arquer, F. P. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A·cm−2. Science 367, 661–666 (2020).

    Article  PubMed  CAS  Google Scholar 

  26. Ma, S. et al. One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. J. Power Sources 301, 219–228 (2016).

    Article  CAS  Google Scholar 

  27. Sandberg, R. B., Montoya, J. H., Chan, K. & Nørskov, J. K. CO-CO coupling on Cu facets: coverage, strain and field effects. Surf. Sci. 654, 56–62 (2016).

    Article  CAS  Google Scholar 

  28. Zhan, C. et al. Revealing the CO coverage-driven C–C coupling mechanism for electrochemical CO2 reduction on Cu2O nanocubes via operando Raman spectroscopy. ACS Catal. 11, 7694–7701 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim, Y. et al. Time-resolved observation of C–C coupling intermediates on Cu electrodes for selective electrochemical CO2 reduction. Energy Environ. Sci. 13, 4301–4311 (2020).

    Article  CAS  Google Scholar 

  30. Liu, X. et al. pH effects on the electrochemical reduction of CO2 towards C2 products on stepped copper. Nat. Commun. 10, 32 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wuttig, A. & Surendranath, Y. Impurity ion complexation enhances carbon dioxide reduction catalysis. ACS Catal. 5, 4479–4484 (2015).

    Article  CAS  Google Scholar 

  32. Newman, J. & Thomas-Alyea, K. E. Electrochemical Systems 3rd edn (John Wiley & Sons, 2004).

  33. Wuttig, A., Yoon, Y., Ryu, J. & Surendranath, Y. Bicarbonate is not a general acid in Au-catalyzed CO2 electroreduction. J. Am. Chem. Soc. 139, 17109–17113 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Lee, M.-Y., Ringe, S., Kim, H., Kang, S. & Kwon, Y. Electric field mediated selectivity switching of electrochemical CO2 reduction from formate to CO on carbon supported Sn. ACS Energy Lett. 5, 2987–2994 (2020).

    Article  CAS  Google Scholar 

  35. Vijay, S. et al. Dipole-field interactions determine the CO2 reduction activity of 2D Fe–N–C single-atom catalysts. ACS Catal. 10, 7826–7835 (2020).

    Article  CAS  Google Scholar 

  36. Jafarzadeh, A., Bal, K. M., Bogaerts, A. & Neyts, E. C. Activation of CO2 on copper surfaces: the synergy between electric field, surface morphology, and excess electrons. J. Phys. Chem. C Nanomater Interfaces 124, 6747–6755 (2020).

    Article  CAS  Google Scholar 

  37. Chen, L. D., Urushihara, M., Chan, K. & Nørskov, J. K. Electric field effects in electrochemical CO2 reduction. ACS Catal. 6, 7133–7139 (2016).

    Article  CAS  Google Scholar 

  38. Ludwig, T. et al. Atomistic insight into cation effects on binding energies in Cu-catalyzed carbon dioxide reduction. J. Phys. Chem. C Nanomater Interfaces 124, 24765–24775 (2020).

    Article  CAS  Google Scholar 

  39. Hedström, S. et al. Spin uncoupling in chemisorbed OCCO and CO2: two high-energy intermediates in catalytic CO2 reduction. J. Phys. Chem. C Nanomater Interfaces 122, 12251–12258 (2018).

    Article  CAS  Google Scholar 

  40. Ooka, H., Figueiredo, M. C. & Koper, M. T. M. Competition between hydrogen evolution and carbon dioxide reduction on copper electrodes in mildly acidic media. Langmuir 33, 9307–9313 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Thorson, M. R., Siil, K. I. & Kenis, P. J. A. Effect of cations on the electrochemical conversion of CO2 to CO. J. Electrochem. Soc. 160, F69–F74 (2012).

    Article  CAS  Google Scholar 

  42. Zhang, Z.-Q., Banerjee, S., Thoi, V. S. & Shoji Hall, A. Reorganization of interfacial water by an amphiphilic cationic surfactant promotes CO2 reduction. J. Phys. Chem. Lett. 11, 5457–5463 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Li, J., Li, X., Gunathunge, C. M. & Waegele, M. M. Hydrogen bonding steers the product selectivity of electrocatalytic CO reduction. Proc. Natl Acad. Sci. USA 116, 9220–9229 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bohra, D., Chaudhry, J. H., Burdyny, T., Pidko, E. A. & Smith, W. A. Modeling the electrical double layer to understand the reaction environment in a CO2 electrocatalytic system. Energy Environ. Sci. 12, 3380–3389 (2019).

    Article  CAS  Google Scholar 

  45. Choi, C. et al. Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. Nat. Catal. 3, 804–812 (2020).

    Article  CAS  Google Scholar 

  46. Li, J. et al. Hydroxide is not a promoter of C2+ product formation in the electrochemical reduction of CO on copper. Angew. Chem. Int. Ed. Engl. 59, 4464–4469 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Fawcett, W. R. Fifty years of studies of double layer effects in electrode kinetics—a personal view. J. Solid State Electrochem. 15, 1347 (2011).

    Article  CAS  Google Scholar 

  48. Frumkin, A. N., Petry, O. A. & Nikolaeva-Fedorovich, N. V. On the determination of the value of the charge of the reacting particle and of the constant α from the dependence of the rate of electro-reduction on the potential and concentration of the solution. Electrochim. Acta 8, 177–192 (1963).

    Article  CAS  Google Scholar 

  49. Fawcett, W. R. & Mackey, M. D. The electroreduction of peroxydisulphate anion in formamide. J. Electroanal. Chem. Interfac. Electrochem. 27, 219–231 (1970).

    Article  CAS  Google Scholar 

  50. Gu, J., Héroguel, F., Luterbacher, J. & Hu, X. Densely packed, ultra small SnO nanoparticles for enhanced activity and selectivity in electrochemical CO2 reduction. Angew. Chem. Int. Ed. Engl. 57, 2943–2947 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Wang, Y. et al. Ensemble effect in bimetallic electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 141, 16635–16642 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Guo, H. et al. Shape-selective formation of monodisperse copper nanospheres and nanocubes via disproportionation reaction route and their optical properties. J. Phys. Chem. C Nanomater Interfaces 118, 9801–9808 (2014).

    Article  CAS  Google Scholar 

  53. Gu, J. et al. Data of the paper “Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium”. Zenodo https://doi.org/10.5281/zenodo.5751314 (2021).

Download references

Acknowledgements

We thank L. Bai for help with TEM characterizations, and H. Qin for help with XPS characterization and RDE tests. This work was supported by the European Research Council (no. 681292 to X.H), NCCR Catalysis (no. 180544 to X.H. and S.H.), a National Centre of Competence in Research funded by the Swiss National Science Foundation, the EPFL (X.H. and S.H.), Foundation of Shenzhen Science, Technology and Innovation Commission (no. JCYJ20210324104414039 to J.G.), the European Union Marie Sklodowska-Curie Individual Fellowships (no. 891545 to W.R.), the European Union’s Horizon 2020 research and innovation programme (no. 85144, SELECT-CO2, to S.H.) and a Starting Grant of the Swiss National Science Foundation (no. 155876 to S.H.).

Author information

Authors and Affiliations

Authors

Contributions

J.G. performed the majority of synthesis, characterization and electrochemical tests. S.L. performed simulations. W.N. performed Au RDE tests. W.R. performed electrochemical tests in near-neutral and alkaline media. J.G., S.L., S.H. and X.H. analysed data. J.G. and X.H. wrote the paper, with input from all other co-authors. S.H. and X.H. directed the research.

Corresponding author

Correspondence to Xile Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Notes 1 and 2, Figs. 1–26, Tables 1–4 and references.

Supplementary Video 1

RDE experiment. Au RDE in 0.1 M HOTf + 0.4 M KOTf. Current density was –200 mA cm–2 and rotating speed was 1,600 r.p.m.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, J., Liu, S., Ni, W. et al. Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nat Catal 5, 268–276 (2022). https://doi.org/10.1038/s41929-022-00761-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00761-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing