Skip to main content
Log in

Force-velocity relation and load-sharing in the linear polymerization ratchet revisited: the effects of barrier diffusion

  • Regular Article - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We study the velocity-force (V-F) relation for a Brownian ratchet consisting of a linear rigid polymer growing against a diffusing barrier, acted upon by a opposing constant force (F). Using a careful mathematical analysis, we derive the V-F relations in the extreme limits of fast and slow barrier diffusion. In the first case, V depends exponentially on the load F, in agreement with the well-known formula proposed by Peskin, Odell and Oster (1993), while the relationship becomes linear in the second case. For a bundle of two filaments growing against a common barrier, equal sharing of load in the corresponding V-F relation is predicted by a mean-field argument in both limits. However, the scaling behaviour of velocity with the number of filaments is different for the two cases. In the limit of large D, the validity of the mean-field approach is tested, and partially supported by a detailed and rigorous analysis. Our principal predictions are also verified in numerical simulations.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. T.L. Hill, M.W. Kirschner, Int. Rev. Cytol. 78, 1–125 (1982)

    Article  Google Scholar 

  2. C.S. Peskin, G.M. Odell, G.F. Oster, Biophys. J. 65(1), 316–324 (1993)

    Article  ADS  Google Scholar 

  3. G.S. van Doorn, C. Tănase, B.M. Mulder, M. Dogterom, Eur Biophys J. 29(1), 2–6 (2000)

    Article  Google Scholar 

  4. S. Inoué, E.D. Salmon, Collected Works Of Shinya InouÉ: Microscopes, Living Cells, and dynamic molecules. (2008);p. 749–770

  5. S. Dumont, T.J. Mitchison, Curr Biol. 19(17), R749–R761 (2009)

    Article  Google Scholar 

  6. N. Pavin, I.M. Tolić, Ann. Rev. Biophys. 45, 279–298 (2016)

    Article  Google Scholar 

  7. H. Hotani, H. Miyamoto, Adv Biophys. 26, 135–156 (1990)

    Article  Google Scholar 

  8. T.D. Pollard, J.A. Cooper, Science 326(5957), 1208–1212 (2009)

    Article  ADS  Google Scholar 

  9. D. Bray, Cell movements: from molecules to motility. Garland Science; (2000)

  10. V. Argiro, M. Bunge, M. Johnson, J. Neurosci. Res. 13(1–2), 149–162 (1985)

    Article  Google Scholar 

  11. J.A. Theriot, T.J. Mitchison, L.G. Tilney, D.A. Portnoy, Nature 357(6375), 257–260 (1992)

    Article  ADS  Google Scholar 

  12. L.G. Tilney, D.A. Portnoy, J. Cell Biol. 109(4), 1597–1608 (1989)

    Article  Google Scholar 

  13. G.A. Dabiri, J.M. Sanger, D.A. Portnoy, F.S. Southwick, Proc. Natl. Acad. Sci. USA 87(16), 6068–6072 (1990)

    Article  ADS  Google Scholar 

  14. J. Sanger, J. Sanger, F. Southwick, Infect Immun. 60(9), 3609–3619 (1992)

    Article  Google Scholar 

  15. K. Tsekouras, D. Lacoste, K. Mallick, J.F. Joanny, New. J. Phys. 13(10), 103032 (2011)

    Article  ADS  Google Scholar 

  16. X. Li, A.B. Kolomeisky, J. Phys. Chem. B. 119, 4653–4661 (2015)

  17. R. Wang, A. Carlsson, New J. Phys. 16(11), 113047 (2014)

    Article  ADS  Google Scholar 

  18. D. Das, D. Das, R. Padinhateeri, New J. Phys. 16(6), 063032 (2014)

  19. M. Dogterom, B. Yurke, Science 278(5339), 856–860 (1997)

    Article  ADS  Google Scholar 

  20. D. Démoulin, M.F. Carlier, J. Bibette, J. Baudry, Proc. Natl. Acad. Sci. USA 111(50), 17845–17850 (2014)

    Article  ADS  Google Scholar 

  21. D.R. Kovar, T.D. Pollard, Proc. Natl. Acad. Sci. USA 101(41), 14725–14730 (2004)

    Article  ADS  Google Scholar 

  22. M.J. Footer, J.W. Kerssemakers, J.A. Theriot, M. Dogterom, Proc. Natl. Acad. Sci. USA 104(7), 2181–2186 (2007)

    Article  ADS  Google Scholar 

  23. N.J. Burroughs, D. Marenduzzo, J. Phys. Condens Matter. 18(14), S357 (2006)

    Article  ADS  Google Scholar 

  24. M.E. Fisher, A.B. Kolomeisky, Proc. Natl. Acad. Sci. USA 98(14), 7748–7753 (2001)

    Article  ADS  Google Scholar 

  25. E.B. Stukalin, A.B. Kolomeisky, J. Chem. Phys. 121(2), 1097–1104 (2004)

    Article  ADS  Google Scholar 

  26. J. Krawczyk, J. Kierfeld, EPL. 93, 28006 (2011)

    Article  ADS  Google Scholar 

  27. J. Valiyakath, M. Gopalakrishnan, Sci. Rep. 8(1), 2526 (2018)

    Article  ADS  Google Scholar 

  28. C.L. Cole, H. Qian, Biophys. Rev. Lett. (2011);6(01n02):59–79

  29. A. Perilli, C. Pierleoni, G. Ciccotti, J.P. Ryckaert, J. Chem. Phys. 148(9), 095101 (2018)

  30. A.E. Carlsson, Biophys. J. 81(4), 1907–1923 (2001)

    Article  ADS  Google Scholar 

  31. A. Mogilner, G. Oster, Biophys. J. 71(6), 3030–3045 (1996)

    Article  ADS  Google Scholar 

  32. F. Gerbal, P. Chaikin, Y. Rabin, J. Prost, Biophys. J. 79(5), 2259–2275 (2000)

    Article  Google Scholar 

  33. Y. Inoue, T. Adachi, Biomech. Model Mechanobiol. 10(4), 495–503 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

VY would like to thank the computational facilities provided by the High-Performance Computational Environment (HPCE), IIT Madras.

Author information

Authors and Affiliations

Authors

Contributions

Both the authors contributed equally to conceptualization and implementation of the work, as well as the mathematical calculations. V.Y developed the numerical codes for simulations.

Corresponding author

Correspondence to Manoj Gopalakrishnan.

Appendix A: On load-sharing properties of a two-filament bundle

Appendix A: On load-sharing properties of a two-filament bundle

Here, we explore the question of load sharing in a two-filament bundle, outside the MFA. Consider the reflecting boundary condition \(J(x_1=0,x_2)=0\) imposed at the first barrier, which implies the relation

$$\begin{aligned} \begin{aligned} -D\partial _{x_1}\theta (x_1,x_2)|_{x_1=0}=D\partial _{x_2}\theta (0,x_2)+f\theta (0,x_2). \end{aligned} \end{aligned}$$
(A.1)

After differentiating Eq. (A.1) with respect to \(x_2\), and putting \(x_2=0\), we arrive at

$$\begin{aligned} -D\frac{\partial ^2\theta }{\partial x_2\partial x_1}\bigg |_{x_1,x_2=0}\!\!\!=\!D\frac{\partial ^2}{\partial x_2^2}\theta (0,x_2)\bigg |_{x_2=0}\!+\!f\frac{\partial \theta (0,x_2) }{\partial x_2}\bigg |_{x_2=0}. \nonumber \\ \end{aligned}$$
(A.2)

Let us define the function \(\psi (x)=\theta (x,0)=\theta (0,x)\), where the second equality follows from symmetry of \(\theta (x_1,x_2)\) with respect to exchange of \(x_1\) and \(x_2\). This definition, when used in Eq. A.2, gives

$$\begin{aligned} D\frac{\partial ^2 \theta }{\partial x_2^2}\bigg |_{x_1,x_2=0}\!\!\!=\!-D\frac{\partial }{\partial x_1}\bigg (\frac{\partial \theta }{\partial x_2}\bigg )\bigg |_ {x_1=0,x_2=0}\!-\!f\bigg (\frac{\partial \psi }{\partial x_2}\bigg )_{x_2=0}. \nonumber \\ \end{aligned}$$
(A.3)

Next, use the reflecting boundary condition at the second barrier, i.e. \(J(x_1,x_2=0)\), which provides the relation

$$\begin{aligned} \begin{aligned} D\frac{\partial \theta (x_1,x_2)}{\partial x_2}\bigg |_{x_2=0}=D\frac{\partial \psi (x_1)}{\partial x_1}-f\psi (x_1), \end{aligned} \end{aligned}$$
(A.4)

which, when used in Eq. A.3, yields the following useful relation between the second derivatives:

$$\begin{aligned} \begin{aligned} \frac{\partial ^2\theta (0,x_2)}{\partial x_2^2}\bigg |_{x_2=0}=\frac{\partial ^2\psi (x_1)}{\partial x_1^2}\bigg |_{x_1=0}. \end{aligned} \end{aligned}$$
(A.5)

Let us now revisit Eq. 31 for the two-filament bundle, and put \(x_2=0\). It then follows that the function \(\psi (x)\) satisfies the equation

$$\begin{aligned} \begin{aligned} D\frac{\partial ^2\psi }{\partial x^2}+2f\frac{\partial \psi }{\partial x}+\frac{f^2}{D}\psi =D\psi ^{\prime \prime }(0) \end{aligned} \end{aligned}$$
(A.6)

where we have used the exact result \(T(x,0)=0\) for any x (see Eq. 32). In Laplace space, Eq. A.6 has the solution

$$\begin{aligned} \begin{aligned} \tilde{\psi }(s)=\frac{D\psi ''(0)}{s(s^2+2fs+\frac{f^2}{D})}+\frac{(\frac{3}{2}f+Ds)\psi (0)}{(s^2+2fs+\frac{f^2}{D})}, \end{aligned} \end{aligned}$$
(A.7)

where we have used the reflecting boundary condition \(2D\psi ^{\prime }(0) +f\psi (0)=0\) for \(\psi (x)\), which follows from \(J(x_1=0,x_2=0)=0\). The inverse Laplace transform of Eq. A.7 gives

$$\begin{aligned} \psi (x)= & {} \frac{\psi ''(0)}{\alpha _1}\bigg [\frac{1}{\alpha _1}(1-e^{-\alpha _1 x})-xe^{-\alpha _1 x}\bigg ]\nonumber \\&+\psi (0)\bigg (e^{-\alpha _1 x}+\frac{f}{2D}xe^{-\alpha _1 x}\bigg ), \end{aligned}$$
(A.8)

where \(\alpha _1=f/D\). Taylor expansion of Eq. A.8 around \(x=0\) yields the expression

$$\begin{aligned} \begin{aligned} \psi (x)\equiv \psi (0)\bigg (1-\frac{f}{2D}x\bigg )+\frac{\psi ''(0)}{2}x^2. \end{aligned} \end{aligned}$$
(A.9)

It is confirmed readily by observation that Eq. 38 and Eq. 45, derived under the MFA, are consistent with Eq. A.9 up to \({{\mathcal {O}}}(x)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, V., Gopalakrishnan, M. Force-velocity relation and load-sharing in the linear polymerization ratchet revisited: the effects of barrier diffusion. Eur. Phys. J. E 45, 35 (2022). https://doi.org/10.1140/epje/s10189-022-00190-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-022-00190-6

Navigation