Skip to main content
Log in

Progress on statistical models of evaluating inclusions in clean steels

  • Review
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Non-metallic inclusions are critical for the fatigue failure of clean steels in service; especially, the large and hard inclusions are detrimental. Since it is not possible to measure all the inclusions in the large-volume clean steels, statistical models have been developed to evaluate inclusions, aiming at predicting the maximum inclusion size in the large volume from the data of inclusions, which are derived from the limited observations on small-volume specimens. Different statistical models were reviewed together with their supporting theories. In particular, the block maxima and the threshold types of models were discussed through a thorough comparison as they are both widely used and based on the extreme value theory. The predicted results not only are used to distinguish the different cleanliness levels of steels, but also help to estimate fatigue strength. Finally, future research is proposed to focus on tackling the present difficulties encountered by statistical models, including the sufficient credibility of obtained results and the robustness of models for applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.D. Chapetti, T. Tagawa, T. Miyata, Mater. Sci. Eng. A 356 (2003) 236–244.

    Article  Google Scholar 

  2. S.X. Li, Int. Mater. Rev. 57 (2012) 92–114.

    Article  Google Scholar 

  3. Y. Tomita, J. Mater. Sci. 28 (1993) 853–859.

    Article  Google Scholar 

  4. Y. Murakami, T. Endo, Int. J. Fatigue 2 (1980) 23–30.

    Article  Google Scholar 

  5. J.M. Zhang, S.X. Li, Z.G. Yang, G.Y. Li, W.J. Hui, Y.Q. Weng, Int. J. Fatigue 29 (2007) 765–771.

    Article  Google Scholar 

  6. Z.G. Yang, J.M. Zhang, S.X. Li, G.Y. Li, Q.Y. Wang, W.J. Hui, Y.Q. Weng, Mater. Sci. Eng. A 427 (2006) 167–174.

    Article  Google Scholar 

  7. C. Ma, H.W. Luo, Metall. Anal. 37 (2017) No. 8, 1–8.

    Google Scholar 

  8. J.A. Ogilvy, Ultrasonics 31 (1993) 219–228.

    Article  Google Scholar 

  9. G. Shi, H.V. Atkinson, C.M. Sellars, C.W. Anderson, Acta Mater. 47 (1999) 1455–1468.

    Article  Google Scholar 

  10. X. Pan, J. Yang, Metals 10 (2020) 637.

    Article  Google Scholar 

  11. Y. Murakami, M. Takada, T. Toriyama, Int. J. Fatigue 20 (1998) 661–667.

    Article  Google Scholar 

  12. Y. Murakami, S. Beretta, Extremes 2 (1999) 123–147.

    Article  Google Scholar 

  13. C.W. Anderson, G. Shi, H.V. Atkinson, C.W. Sellars, Acta Mater. 48 (2000) 4235–4246.

    Article  Google Scholar 

  14. A. García-Carbajal, M. Herrera-Trejo, E.I. Castro-Cedeño, M. Castro-Román, A.I. Martinez-Enriquez, Metall. Mater. Trans. B 48 (2017) 3364–3379.

    Article  Google Scholar 

  15. B.H. Choi, S.H. Song, J. Mater. Sci. 40 (2005) 5427–5433.

    Article  Google Scholar 

  16. H.V. Atkinson, G. Shi, C.W. Sellars, C.W. Anderson, Mater. Sci. Technol. 16 (2000) 1175–1180.

    Article  Google Scholar 

  17. G. Shi, H.V. Atkinson, C.W. Sellars, C.W. Anderson, J.R. Yates, Acta Mater. 49 (2001) 1813–1820.

    Article  Google Scholar 

  18. C.W. Anderson, J. de Maré, H. Rootzén, Acta Mater. 53 (2005) 2295–2304.

    Article  Google Scholar 

  19. J. Pickands III, Ann Stat. 3 (1975) 119–131.

    MathSciNet  Google Scholar 

  20. A.C. Davison, R.L. Smith, J. R. Stat. Soc. Ser. B, Methodol. 52 (1990) 393–425.

    Google Scholar 

  21. F. Meurling, A. Melander, M. Tidesten, L. Westin, Int. J. Fatigue 23 (2001) 215–224.

    Article  Google Scholar 

  22. M. Hallberg, P.G. Jönsson, T.L.I. Jonsson, R. Eriksson, Scand. J. Metall. 34 (2005) 41–56.

    Article  Google Scholar 

  23. L.F. Zhang, B.G. Thomas, ISIJ Int. 43 (2003) 271–291.

    Article  Google Scholar 

  24. A. Melander, M. Larsson, Int. J. Fatigue 15 (1993) 119–131.

    Article  Google Scholar 

  25. Y. Bergengren, M.L. And, A. Melander, Fatigue Fract. Eng. Mater. Struct. 18 (1995) 1071–1087.

    Article  Google Scholar 

  26. J.H. Park, Calphad 35 (2011) 455–462.

    Article  Google Scholar 

  27. X.D. Zou, H. Matsuura, C. Wang, Metall. Mater. Trans. B 50 (2019) 1134–1138.

    Article  Google Scholar 

  28. T. Li, S.I. Shimasaki, S. Taniguchi, S. Narita, ISIJ Int. 56 (2016) 1625–1633.

    Article  Google Scholar 

  29. J. Takahashi, ISIJ Int. 49 (2009) 1030–1035.

    Article  Google Scholar 

  30. J. Takahashi, H. Suito, Acta Mater. 49 (2001) 711–719.

    Article  Google Scholar 

  31. M. Fátima Vaz, M.A. Fortes, Scripta Metall. 22 (1988) 35–40.

    Article  Google Scholar 

  32. J.J. Bucki, K.J. Kurzydłowski, Scripta Metall. Mater. 28 (1993) 689–692.

    Article  Google Scholar 

  33. L. Nedelkovich, A.N. Smirnov, V.L. Pilyushenko, M. Dzhurdzhevich, T.V. Chemobaeva, Ind. Lab. 59 (1993) 714–719.

    Google Scholar 

  34. J. Cybo, Steel Res. 66 (1995) 167–171.

    Article  Google Scholar 

  35. A. Karasev, H. Suito, Metall. Mater. Trans. B 30 (1999) 259–270.

    Article  Google Scholar 

  36. C. Chatfield, Statistics for technology: a course in applied statistics, 3rd ed., Routledge, Boca Raton, USA, 1983.

    MATH  Google Scholar 

  37. M.G. Kendall, A. Stuart, J.R. Stat. Soc. Ser. C-Appl. Stat. 2 (1979) 284–286.

    Google Scholar 

  38. S. Coles, J. Bawa, L. Trenner, P. Dorazio, An introduction to statistical modeling of extreme values, Springer, London, UK, 2001.

    Book  Google Scholar 

  39. M.I. Gomes, A. Guillou, Int. Stat. Rev. 83 (2015) 263–292.

    Article  MathSciNet  Google Scholar 

  40. E.I. Castro-Cedeño, M. Herrera-Trejo, M. Castro-Román, F. Castro-Uresti, M. López-Cornejo, Metall. Mater. Trans. B 47 (2016) 1613–1625.

    Article  Google Scholar 

  41. Z. Sun, W. Li, H. Deng, Z. Zhang, Eng. Failure Anal. 59 (2016) 28–40.

    Article  Google Scholar 

  42. Y. Murakami, JSME Int. J. Ser. 1 32 (1989) 167–180.

    Google Scholar 

  43. T. Toriyama, Y. Murakami, T. Yamashita, K. Tsubota, K. Furumura, Tetsu-to-Hagane 81 (1995) 1019–1024.

    Article  Google Scholar 

  44. S. Beretta, Y. Murakami, Metall. Mater. Trans. B 32 (2001) 517–523.

    Article  Google Scholar 

  45. E.J. Gumbel, Statistics of extremes, Columbia University Press, New York, America, 1958.

    Book  MATH  Google Scholar 

  46. D.W. Hetzner, J. ASTM Int. 3 (2006) 1–18.

    Google Scholar 

  47. Y. Murakami, T. Toriyama, E.M. Coudert, J. Test. Eval. 22 (1994) 318–326.

    Article  Google Scholar 

  48. C.W. Anderson, S. Beretta, J. De Maré, T. Svensson, Technical recommendations for the extreme value analysis of data on large nonmetallic inclusions in steels, Tech. Rep. ESIS P11–02, GKSS Research Centre, Geesthacht, Germany, 2002.

  49. J.W. Zhang, L.T. Lu, P.B. Wu, J.J. Ma, G.G. Wang, W.H. Zhang, Mater. Sci. Eng. A 562 (2013) 211–217.

    Article  Google Scholar 

  50. P.P. Milella, Data scatter and statistical considerations, in: Fatigue and Corrosion in Metals, Springer, Milano, Italy, 2013, pp. 193–243.

    Chapter  Google Scholar 

  51. Y. Murakami, J. Res. Natl. Inst. Stand. Technol. 99 (1994) 345–351.

    Article  Google Scholar 

  52. L.H. Xu, H.W. Luo, China Metall. 31 (2021) No. 6, 19–25.

    Google Scholar 

  53. A. Ahmad, J. Purbolaksono, Z. Yahya, Mater. Sci. Eng. A 513–514 (2009) 319–324.

    Article  Google Scholar 

  54. S. Beretta, Y. Murakami, Fatigue Fract. Eng. Mater. Struct. 21 (1998) 1049–1065.

    Article  Google Scholar 

  55. D. Rivas, F. Caleyo, A. Valor, J.M. Hallen, Corros. Sci. 50 (2008) 3193–3204.

    Article  Google Scholar 

  56. P.A. Scarf, P.J. Laycock, J. Res. Natl. Inst. Stand. Technol. 99 (1994) 313.

    Article  Google Scholar 

  57. D.W. Guo, Z.B. Hou, J.H. Cao, Z.A. Guo, Y. Chang, G.H. Wen, J. Iron Steel Res. Int. 27 (2020) 1163–1169.

    Article  Google Scholar 

  58. Y. Murakami, Y. Uemura, K. Kawakami, Trans. Japan Soc. Mech. Eng. 55 (1989) 58–62.

    Google Scholar 

  59. J. Ekengren, J. Bergström, Extremes 15 (2012) 257–265.

    Article  MathSciNet  Google Scholar 

  60. S. Beretta, C. Anderson, Y. Murakami, Acta Mater. 54 (2006) 2277–2289.

    Article  Google Scholar 

  61. Z. Cao, Z. Shi, F. Yu, G. Wu, W. Cao, Y. Weng, Int. J. Fatigue 126 (2019) 1–5.

    Article  Google Scholar 

  62. J.R.M. Hosking, J.R. Wallis, Technometrics 29 (1987) 339–349.

    Article  MathSciNet  Google Scholar 

  63. H.V. Atkinson, G. Shi, Prog. Mater. Sci. 48 (2003) 457–520.

    Article  Google Scholar 

  64. G. Shi, H.V. Atkinson, C.M. Sellars, C.W. Anderson, Ironmak. Steelmak. 27 (2000) 355–360.

    Article  Google Scholar 

  65. S. Sae-Tang, R. Srihera, P. Soontornpipit, P. Satitvipawee, C. Viwatwongkasem, Procedia Comput. Sci. 86 (2016) 212–215.

    Article  Google Scholar 

  66. N. Tajvidi, Extremes 6 (2003) 111–123.

    Article  MathSciNet  Google Scholar 

  67. D. Walshaw, J. Res. Natl. Inst. Stand. Technol. 99 (1994) 399.

    Article  Google Scholar 

  68. G. Shi, H.V. Atkinson, C.M. Sellars, C.W. Anderson, Ironmak. Steelmak. 26 (1999) 239–246.

    Article  Google Scholar 

  69. C.W. Anderson, G. Shi, H.V. Atkinson, C.M. Sellars, J.R. Yates, Acta Mater. 51 (2003) 2331–2343.

    Article  Google Scholar 

  70. H. Kitagawa, Proc. of 2nd ICM, Cleveland 1976 (1976) 627–631.

  71. Y. Murakami, S. Kodama, S. Konuma, Int. J. Fatigue 11 (1989) 291–298.

    Article  Google Scholar 

  72. Y. Murakami, Y. Uemura, Y. Natsume, S. Miyakawa, Trans. Japan Soc. Mech. Eng. 56 (1990) 1074–1081.

    Google Scholar 

  73. M. Luo, J.G. Wang, Y.F. Hong, Y.X. Feng, Z.H. Feng, Bearing (2021) No. 11, 16–23.

    Google Scholar 

  74. B. Lei, H.J. Liu, W.B. Zhang, J.Q. Li, J. Mech. Trans. 44 (2020) 114–121.

    Google Scholar 

  75. A.A. Walvekar, N. Paulson, F. Sadeghi, N. Weinzapfel, M. Correns, M. Dinkel, J. Tribol. 139 (2017) 011101.

    Article  Google Scholar 

  76. Z.D. Sun, D.B. Hou, Z.Y. Li, Ordnance Mater. Sci. Eng. 44 (2021) 98–103.

    Google Scholar 

  77. N. Xiao, W.J. Hui, Y.J. Zhang, X.L. Zhao, Y. Chen, Chin. J. Eng. 42 (2020) 912–921.

    Google Scholar 

  78. G.D. Liu, Y.L. Liang, T. Ren, Ordnance Mater. Sci. Eng. 35 (2012) No. 1, 15–18.

    Article  Google Scholar 

  79. J.M. Zhang, J.F. Zhang, Z.G. Yang, S.X. Li, W.J. Hui, Y.Q. Weng, Acta Metall. Sin. 40 (2004) 846–850.

    Google Scholar 

  80. Z.D. Sun, W. Li, Z.R. Wang, Z.Y. Zhang, H.L. Deng, Trans. Mater. Heat Treat. 36 (2015) No. 3, 238–243.

    Google Scholar 

  81. J.F. Zhang, J.M. Zhang, Z.G. Yang, G.Y. Li, Y.S. Zhao, S.X. Li, J. Mech. Strength 26 (2004) No. S1, 165–168.

    Google Scholar 

  82. C. Tian, J.H. Liu, J.W. Fan, H.C. Lu, H. Dong, J. Iron Steel Res. 30 (2018) 127–131.

    Google Scholar 

  83. Y. Murakami, K. Schmidt, T. Pardoen, R. Knockaert, I. Knockaert, Y. Delannay, EMAS (ECF 11) mechanisms and mechanics of damage and failure, Francia, Germany, 1996.

  84. F.L. Sun, K. Geng, F. Yu, H.W. Luo, Acta Metall. Sin. 56 (2019) 693–703.

    Google Scholar 

  85. J.R. Yates, G. Shi, H.V. Atkinson, C.M. Sellars, C.W. Anderson, Fatigue Fract. Eng. Mater. Struct. 25 (2002) 667–676.

    Article  Google Scholar 

  86. Y. Kanbe, A. Karasev, H. Todoroki, P.G. Jönsson, ISIJ Int. 51 (2011) 2056–2063.

    Article  Google Scholar 

  87. J.M. Zhang, J.F. Zhang, Z.G. Yang, G.Y. Li, G. Yao, S.X. Li, W.J. Hui, Y.Q. Weng, Mater. Sci. Eng. A 394 (2005) 126–131.

    Article  Google Scholar 

  88. E. Zinngrebe, C.V. Hoek, H. Visser, A. Westendorp, I.H. Jung, ISIJ Int. 52 (2012) 52–61.

    Article  Google Scholar 

  89. L.F. Zhang, W. Pluschkell, Ironmak. Steelmak. 30 (2003) 106–110.

    Article  Google Scholar 

  90. Y.J. Kwon, J. Zhang, H.G. Lee, ISIJ Int. 48 (2008) 891–900.

    Article  Google Scholar 

  91. Y. Kanbe, A. Karasev, H. Todoroki, P.G. Jönsson, ISIJ Int. 53 (2013) 1968–1973.

    Article  Google Scholar 

  92. A. Dutfoy, S. Parey, N. Roche, Depend. Model. 2 (2014) 30–48.

    Google Scholar 

  93. S.G. Coles, J.A. Tawn, J.R. Stat. Soc. Ser. C-Appl. Stat. 43 (1994) 1–31.

    Google Scholar 

  94. F. Durante, G. Salvadori, Environmetrics 21 (2010) 143–161.

    MathSciNet  Google Scholar 

  95. A.B. Schmiedt, H.H. Dickert, W. Bleck, U. Kamps, Acta Mater. 95 (2015) 1–9.

    Article  Google Scholar 

  96. A.B. Schmiedt, H.H. Dickert, W. Bleck, U. Kamps, J. Appl. Stat. 41 (2014) 582–595.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Prof. H.W. Luo acknowledges the financial support from the National Natural Science Foundation of China (No. 51831002) and Fundamental Research Funds for the Central Universities (No. FRF-TP-18-002C2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-wen Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Guan, Yh. & Luo, Hw. Progress on statistical models of evaluating inclusions in clean steels. J. Iron Steel Res. Int. 29, 1153–1163 (2022). https://doi.org/10.1007/s42243-022-00773-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00773-9

Keywords

Navigation