Skip to main content
Log in

Formation of the Composition of Polycyclic Aromatic Hydrocarbons in Hummocky Bogs in the Forest-Tundra–Northern Tundra Zonal Sequence

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The accumulation of polycyclic aromatic hydrocarbons (PAHs) in plants and peat of three natural subzones—forest-tundra, southern tundra, and northern tundra—is discussed. The content of polyarenes is estimated with high performance liquid chromatography. The absence of statistically significant differences in the PAH accumulation by the plants of the same species in the studied ecotones allows for extrapolation of the data on PAH composition of the studied plants to other background hummocky bogs. The PAH composition of dominant plants influences the PAH composition of the upper peat layers, as is demonstrated by high correlation coefficients. A gradual decomposition of the herbs and trees residues, enriched with lignin, leads to neoformation of heavy polyarene structures (absent in plants) in peat. The coefficients of correlation between peat and plant PAH compositions decrease with depth and the degree of peat decomposition. All studied peatlands display an inverse correlation between the accumulation of naphthalene and benzo[ghi]perylene and the decrease in PAH content in the upper layers of permafrost. The content of polyarenes in the permafrost horizons is determined by the specific historical features in peatland formation. The peak values of five–six ring PAH structures, mainly benzo[ghi]perylene, are observed in the peat layers formed during the Holocene climatic optimum under excessive moistening. As for the raised and transitional bogs having originated during the Subboreal, any increased benzo[ghi]perylene concentrations are unobservable. A decrease in the soil temperatures from south to north is a likely reason for the observed decrease in the PAH content in peatlands from the forest-tundra and southern tundra to northern tundra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. R. S. Vasilevich, V. A. Beznosikov, and E. D. Lodygin, “Molecular structure of humus substances in permafrost peat mounds in forest-tundra,” Eurasian Soil Sci. 52, 283–295 (2019).

    Article  Google Scholar 

  2. D. N. Gabov, Ye. V. Yakovleva, R. S. Vasilevich, O. L. Kuznetsov, and V. A. Beznosikov, “Polycyclic aromatic hydrocarbons in peat mounds of the permafrost zone,” Eurasian Soil Sci. 52, 1038–1050 (2019).

    Article  Google Scholar 

  3. E. A. Golovatskaya and L. G. Nikonova, “Decomposition of the plant remains in peat soils of oligotrophic mires,” Vestn. Tomsk. Gos. Univ., Biol., No. 3 (23), 137–151 (2013). https://doi.org/10.17223/19988591/23/13

  4. A. N. Gennadiev, Yu. I. Pikovskii, A. S. Tsibart, and M. A. Smirnova, “Hydrocarbons in soils: Origin, composition, and behavior (Review),” Eurasian Soil Sci. 48, 1076–1089 (2015).

    Article  Google Scholar 

  5. Geocryological Map of the USSR, Scale 1 : 2 500 000, Ed. E. D. Ershov and K. A. Kondrat’ev (Moscow State Univ., Moscow, 1998) [in Russian].

  6. A. A. Dymov, Yu. A. Dubrovsky, and D. N. Gabov, “Pyrogenic changes in iron-illuvial podzols in the middle taiga of the Komi Republic,” Eurasian Soil Sci. 47, 47–56 (2014).

    Article  Google Scholar 

  7. A. A. Dymov, Yu. A. Dubrovskii, E. V. Zhangurov, D. N. Gabov, and N. A. Nizovtsev, “Impact of fire in northern taiga spruce forest on soil organic matter,” Lesovedenie, No. 1, 52–62 (2015).

    Google Scholar 

  8. E. S. Elin, Phenolic Compounds in Biosphere (Siberian Branch, Russian Academy of Sciences, Novosibirsk, 2001) [in Russian].

  9. A. P. Zhidkin, A. N. Gennadiev, and T. S. Koshovskii, “Input and behavior of polycyclic aromatic hydrocarbons in arable, fallow, and forest soils of the taiga zone (Tver oblast),” Eurasian Soil Sci. 50, 296–304 (2017).

    Article  Google Scholar 

  10. L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

    Google Scholar 

  11. A. N. Nesmeyanov and N. A. Nesmeyanov, Fundamentals of Organic Chemistry (Khimiya, Moscow, 1970) [in Russian].

    Google Scholar 

  12. D. S. Orlov, Humic Acids of Soils and General Theory of Humification (Moscow State Univ., Moscow, 1990) [in Russian].

    Google Scholar 

  13. A. V. Pastukhov, D. A. Kaverin, and D. N. Gabov, “Polycyclic aromatic hydrocarbons in cryogenic peat plateaus of northeastern Europe,” Eurasian Soil Sci. 50, 805–813 (2017).

    Article  Google Scholar 

  14. F. Ya. Rovinskii, T. A. Teplitskaya, and T. A. Alekseeva, Background Monitoring of Polycyclic Aromatic Hydrocarbons (Gidrometeoizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  15. E. P. Feofilova and I. S. Mysyakina, “Lignin: chemical structure, biodegradation, and practical application (a review),” Appl. Biochem. Microbiol. 52, 573–581 (2016).

    Article  Google Scholar 

  16. E. V. Yakovleva, D. N. Gabov, and V. A. Beznosikov, “The effect of various doses of benzo[a]pyrene on the composition of polycyclic aromatic hydrocarbons in a sand culture,” Agrokhimiya, No. 6, 90–96 (2015).

    Google Scholar 

  17. E. V. Yakovleva, D. N. Gabov, R. S. Vasilevich, and N. N. Goncharova, “Participation of plants in the formation of polycyclic aromatic hydrocarbons in peatlands,” Eurasian Soil Sci. 53, 317–329 (2020).

    Article  Google Scholar 

  18. E. V. Yakovleva, D. N. Gabov, and A. N. Panyukov, “Accumulation of polyarenes in plants of peatlands on the coast of the Barents Sea,” Eurasian Soil Sci. 53, 1538–1548 (2020).

    Article  Google Scholar 

  19. S. C. Alagic, B. S. Maluckov, and V. B. Radojicic, “How can plants manage polycyclic aromatic hydrocarbons? May these effects represent a useful tool for an effective soil remediation? A review,” Clean Technol. Environ. Policy 17, 597–614 (2015). https://doi.org/10.1007/s10098-014-0840-6

    Article  Google Scholar 

  20. AMAP Assessment 2016: Chemicals of Emerging Arctic Concern. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway (Narayana Press, Gylling, 2017).

  21. A. Asemaninejad, R. G. Thorn, B. A. Branfireun, and Z. Lindo, “Climate change favors specific fungal communities in boreal peatlands,” Soil Biol. Biochem. 120, 28–36 (2018). https://doi.org/10.1016/j.soilbio.2018.01.029

    Article  Google Scholar 

  22. I. Atanassova and G. W. Brummer, “Polycyclic aromatic hydrocarbons of anthropogenic and biopedogenic origin in a colluviated hydromorphic soil of Western Europe,” Geoderma 120, 27–34 (2004). https://doi.org/10.1016/j.geoderma.2003.08.007

    Article  Google Scholar 

  23. C. A. Belis, I. Offenthaler, and P. Weiss, “Semivolatiles in the forest environment: the case of PAHs,” Plant Ecophysiol. 8, 47–73 (2001).

    Article  Google Scholar 

  24. J. D. Berset, P. Kuehnea, and W. Shotyk, “Concentrations and distribution of some polychlorinated biphenyls PCBs and polycyclic aromatic hydrocarbons PAHs in an ombrotrophic peat bog profile of Switzerland,” Sci. Total Environ. 267, 67–85 (2001). https://doi.org/10.1016/S0048-9697(00)00763-4

    Article  Google Scholar 

  25. I. Campos, N. Abrantes, P. Pereira, A. C. Micaelo, C. Vale, and J. J. Keizer, “Forest fires as potential triggers for production and mobilization of polycyclic aromatic hydrocarbons to the terrestrial ecosystem,” Land Degrad. Dev. 30, 2360–2370 (2019). https://doi.org/10.1002/ldr.3427

    Article  Google Scholar 

  26. Q. Cheng, W. Ge, C. Chai, J. Wu, D. Ma, L. Zeng, X. Zhu, Q. Chen, and J. Li, “Polycyclic aromatic hydrocarbons in soil around coal-fired power plants in Shandong, China,” Pol. J. Environ. Stud. 28 (1), 53–64 (2019). https://doi.org/10.15244/pjoes/81686

    Article  Google Scholar 

  27. N. DiDonato, H. Chen, D. Waggoner, and P. G. Hatcher, “Potential origin and formation for molecular components of humic acids in soils,” Geochim. Cosmochim. Acta 178, 210–222 (2016). https://doi.org/10.16-j.gca.2016.01.013

    Article  Google Scholar 

  28. C. Dijk, W. Doorn, and B. Alfen, “Long term plant biomonitoring in the vicinity of waste incinerators in the Netherlands,” Chemosphere 122, 45–51 (2015). https://doi.org/10.1016/j.chemosphere.2014.11.002

    Article  Google Scholar 

  29. E. Escalante-Espinosa, L. Rodríguez-García, and M. M. Gutiérrez-Rojas, “PAH removal by two native tropical plants cultured on model contaminated soil,” in Polycyclic Aromatic Hydrocarbons: Pollution, Health Effects and Chemistry (Nova Science, New York, 2011), pp. 309–320.

    Google Scholar 

  30. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (UN Food and Agriculture Organization, Rome, 2015).

    Google Scholar 

  31. D. N. Gabov, V. A. Beznosikov, and E. V. Yakovleva, “Accumulation of polycyclic aromatic hydrocarbons in hummocky tundra peatlands under climate change at high latitudes,” Geochem. Int. 55, 737–751 (2017). https://doi.org/10.1134/S0016702917060039

    Article  Google Scholar 

  32. D. N. Gabov, Ye. V. Yakovleva, and R. S. Vasilevich, “Vertical distribution of PAHs during the evolution of permafrost peatlands of the European arctic zone,” Appl. Geochem. 123, 104790 (2020). https://doi.org/10.1016/j.apgeochem.2020.104790

    Article  Google Scholar 

  33. Y. Gao, Y. Zhang, J. Liu, and H. Kong, “Metabolism and subcellular distribution of anthracene in tall fescue (Festuca arundinacea Schreb.),” Plant Soil 365, 171–182 (2013).

    Article  Google Scholar 

  34. Z. Guo, Y. Kang, Z. Hua, S. Lianga, H. Xiec, H. H. Ngo, and J. Zhanga, “Removal pathways of benzofluoranthene in a constructed wetland amended with metallic ions embedded carbon,” Bioresour. Technol. 311, 123481 (2020). https://doi.org/10.1016/j.biortech.2020.123481

    Article  Google Scholar 

  35. N. Hamid, J. H. Syed, M. Junaid, G. Zhang, and R. N. Malik, “Elucidating the urban levels, sources and health risks of polycyclic aromatic hydrocarbons (PAHs) in Pakistan: implications for changing energy demand,” Sci. Total Environ. 619–620, 165–175 (2017). https://doi.org/10.1016/j.scitotenv.2017.11.080

    Article  Google Scholar 

  36. F. Kang, D. Chen, Y. Gao, and Y. Zhang, “Distribution of polycyclic aromatic hydrocarbons in subcellular root tissues of ryegrass (Lolium multiflorum Lam.),” BMC Plant Biol. 10, 210 (2010).

    Article  Google Scholar 

  37. M. Krauss, W. Wilcke, Ch. Martius, A. G. Bandeira, M. V. B. Garrcia, and W. Amelung, “Atmospheric versus biological sources of polycyclic aromatic hydrocarbons (PAHs) in a tropical rain forest environment,” Environ. Pollut. 135 (1), 143–154 (2005).

    Article  Google Scholar 

  38. S. Labana, M. Kapur, D. Malik, D. Prakash, and R. Jain, “Diversity, biodegradation and bioremediation of polycyclic aromatic hydrocarbons,” in Environmental Bioremediation Technologies (Springer-Verlag, Berlin, 2007), pp. 409–443. https://doi.org/10.1007/978-3-540-34793-4_18

  39. Q. Q. Li, Y. G. Li, L. Z. Zhu, B. S. Xing, and B. L. Chen, “Dependence of plant uptake and diffusion of polycyclic aromatic hydrocarbons on the leaf surface morphology and microstructures of cuticular waxes,” Sci. Rep. 7, 46235 (2017). https://doi.org/10.1038/srep46235

    Article  Google Scholar 

  40. Y. Li, S. Zang, K. Zhang, D. Sun, and L. Sun, “Occurrence, sources and potential risks of polycyclic aromatic hydrocarbons in a permafrost soil core, northeast China,” Ecotoxicology, (2020). https://doi.org/10.1007/s10646-020-02285-2

  41. S. Liu, Q. Liu, and T. Ostbye, “Levels and risk factors for urinary metabolites of polycyclic aromatic hydrocarbons in children living in Chongqing, China,” Sci. Total Environ. 598, 553–561 (2017). https://doi.org/10.1016/j.scitotenv.2017.04.103

    Article  Google Scholar 

  42. M. Malawska, I. Bojakowska, and B. Wilkomirski, “Polycyclic aromatic hydrocarbons (PAHs) in peat and plants from selected peat-bogs in the north-east of Poland,” J. Plant Nutr. Soil Sci. 165 (6), 686–691 (2002). https://doi.org/10.1002/jpln.200290004

    Article  Google Scholar 

  43. M. Malawska and A. Ekonomiuk, “The use of wetlands for the monitoring of non-point source air pollution,” Pol. J. Environ. Stud. 17 (1), 57–70 (2008).

    Google Scholar 

  44. P. Masclet, V. Hoyau, J. L. Jaffrezo, and H. Cachier, “Polycyclic aromatic hydrocarbon deposition on the ice sheet of Greenland, Part I: Superficial snow,” Atmos. Environ. 34 (19), 3195–3207 (2000). https://doi.org/10.1016/s1352-2310(99)00196-x

    Article  Google Scholar 

  45. M. Mętrak, E. Aneta, B. Wiłkomirski, T. Staszewski, and M. Suska-Malawska, “Interspecific differences in foliar 1 PAHs load between Scots pine, birch, and wild rosemary from three polish peat bogs,” Environ. Monit. Assess. 188, 456 (2016). https://doi.org/10.1007/s10661-016-5465-2

    Article  Google Scholar 

  46. Z. M. Migaszewski, A. Ga1uszka, J. G. Crock, P. J. Lamothe, and S. Do1egowska, “Interspecies and interregional comparisons of the chemistry of PAHs and trace elements in mosses Hylocomium splendens (Hedw.) B.S.G. and Pleurozium schreberi (Brid.) Mitt. from Poland and Alaska,” Atmos. Environ. 43, 1464–1473 (2009). https://doi.org/10.1016/j.atmosenv.2008.11.035

    Article  Google Scholar 

  47. I. A. Nemirovskaya and A. N. Novigatskii, “Hydrocarbons in the snow and ice cover and waters of the Arctic Ocean,” Geochem. Int. 41, 585–594 (2003).

    Google Scholar 

  48. S. Radić, G. Medunić, Z. Kuhari, V. Roje, K. Maldini, V. Vujcić, and A. Kriohlavek, “The effect of hazardous pollutants from coal combustion activity: phytotoxicity assessment of aqueous soil extracts,” Chemosphere 199, 191–200 (2018). https://doi.org/10.1016/j.chemosphere.2018.02.008

    Article  Google Scholar 

  49. A. Ren, “Environmental pollutants and neural tube defects,” Reprod. Dev. Toxicol. 61, 1139–1166 (2017).

    Article  Google Scholar 

  50. L. Rey-Salgueiro, E. Martínez-Carballo, A. Merino, J. A. Vega, M. T. Fonturbel, and J. Simal-Gandara, “Polycyclic aromatic hydrocarbons in soil organic horizons depending on the soil burn severity and type of ecosystem,” Land Degrad. Dev. 29, 2112–2123 (2018). https://doi.org/10.1002/ldr.2806

    Article  Google Scholar 

  51. E. Schneidemesser, J. J. Schauer, M. M. Shafer, G. S. Hagler, M. H. Bergin, and E. J. Steig, “A method for the analysis of ultra-trace levels of semi-volatile and non-volatile organic compounds in snow and application to a Greenland snow pit,” Polar Sci. 2, 251–266 (2008). https://doi.org/10.1016/j.polar.2008.08.004

    Article  Google Scholar 

  52. D. Sihi, P. W. Ingletta, and K. S. Inglett, “Warming rate drives microbial nutrient demand and enzyme expression during peat decomposition,” Geoderma 336, 12–21 (2019). https://doi.org/10.1016/j.geoderma.2018.08.027

    Article  Google Scholar 

  53. A. Tarafdar and A. Sinha, “Polycyclic aromatic hydrocarbons (PAHs) generated by coal-fired thermal power plants: formation mechanism, characterization, and profiling,” in Pollutants from Energy Sources: Energy, Environment, and Sustainability (Springer-Verlag, Singapore, 2018), pp. 73–90. https://doi.org/10.1007/978-981-13-3281-4_5

  54. K. K. Treseder, Y. Marusenko, A. L. Romero-Olivares, and M. R. Maltz, “Experimental warming alters potential function of the fungal community in boreal forest,” Global Change Biol. 22 (10), 3395–3404 (2016). https://doi.org/10.1111/gcb.13238

    Article  Google Scholar 

  55. K. E. Ugwu and P. O. Ukoha, “Analysis and sources of polycyclic aromatic hydrocarbons in soil and plant samples of a coal mining area in Nigeria,” Bull. Environ. Contam. Toxicol. 96, 383–387 (2016). https://doi.org/10.1007/s00128-016-1727-5

    Article  Google Scholar 

  56. C. H. Vane, B. G. Rawlins, A. W. Kim, V. Moss-Hayes, C. P. Kendrick, and M. J. Leng, “Sedimentary transport and fate of polycyclic aromatic hydrocarbons (PAH) from managed burning of moorland vegetation on a blanket peat, South Yorkshire, UK,” Sci. Total Environ. 449, 81–94 (2013). https://doi.org/10.1016/j.scitotenv.2013.01.043

    Article  Google Scholar 

  57. Z. Wang, H. Li, and S. Liu, “Different distribution of polycyclic aromatic hydrocarbons (PAHs) between Sphagnum and Ledum peat from an ombrotrophic bog in Northeast China,” J. Soils Sediments 19, 1735–1744 (2019). https://doi.org/10.1007/s11368-018-2178-x

    Article  Google Scholar 

  58. J. Wang, H. Bao, H. Zhang, J. Li, H. Hong, and F. Wu, “Effects of cuticular wax content and specific leaf area on accumulation and partition of PAHs in different tissues of wheat leaf,” Environ. Sci. Pollut. Res. 27, 18793–18802 (2020). https://doi.org/10.1007/s11356-020-08409-9

    Article  Google Scholar 

  59. W. Wilcke, “Polycyclic aromatic hydracarbons (PAHs) in soil—a review,” J. Plant Nutr. Soil Sci. 163, 229–248 (2000). https://doi.org/10.1002/1522-2624(200006)163:3<229:AID-JPLN229>3.0.CO;2-6

    Article  Google Scholar 

  60. E. V. Yakovleva, D. N. Gabov, V. A. Beznosikov, B. M. Kondratenok, and M. V. Aniskina, “Biological effects Induced by benzpyrene in soil and plants,” in Pyrene: Chemical Properties, Biochemistry Applications and Toxic Effects (Nova Science, New York, 2013), pp. 1–41.

    Google Scholar 

  61. E. V. Yakovleva, D. N. Gabov, V. A. Beznosikov, B. M. Kondratenok, and Y. A. Dubrovskiy, “Accumulation of PAHs in tundra plants and soils under the influence of coal mining,” Polycycl. Arom. Compd. 37, 203–218 (2017). https://doi.org/10.1080/10406638.2016.1244089

    Article  Google Scholar 

  62. E. V. Yakovleva and D. N. Gabov, “Polyarenes accumulation in tundra ecosystem influenced by coal industry of Vorkuta,” Pol. Polar Res. 41 (3), 237–267 (2020). https://doi.org/10.24425/ppr.2020.134122

    Article  Google Scholar 

Download references

Funding

This study was performed within the framework of the state assignment of the Institute of Biology of the Komi Scientific Research Center of the Ural Branch of the Russian Academy of Sciences “Cryogenesis as a factor in the formation and evolution of soils of the arctic and boreal ecosystems of the European northeast in the conditions of modern anthropogenic impacts, global and regional climatic trends.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Yakovleva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Chirikova

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovleva, E.V., Gabov, D.N. & Vasilevich, R.S. Formation of the Composition of Polycyclic Aromatic Hydrocarbons in Hummocky Bogs in the Forest-Tundra–Northern Tundra Zonal Sequence. Eurasian Soil Sc. 55, 313–329 (2022). https://doi.org/10.1134/S1064229322030140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322030140

Keywords:

Navigation