Skip to main content
Log in

Elastic response of a hollow cylinder with voids and micropolar structure

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The paper aims to study, using the finite element method, the elastic behavior of a cylinder made by a material with micropolar structure, containing (as the results of the processing or introduced intentionally) voids. To study such a type of problem, a theoretical model of a continuous solid body with voids in the material is presented, after which, in order to determine the effect that these voids have, a model with finite elements is made, using Lagrange’s equations. This model can be applied to any type of elastic solid with voids. In the paper study the elastic response of a hollow cylinder made by a material with voids. Finally, comparative results are obtained to show the influence of voids on the elastic behavior of the body in some classic cases. These results are compared with the values obtained in the literature by experimental methods. It is found that a small percentage of voids can lead to significant variations on the mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mehdikhani, M., Gorbatikh, L., Verpoest, I., Lomov, S.V.: Voids in fiber-reinforced polymer composites: a review on their formation, characteristics, and effects on mechanical performance. Judd NCW and Wright WW. Voids and their effects on mechanical-properties of composites: appraisal. Sampe J. 14, 10–14 (1978)

    Google Scholar 

  2. Rohatgi, V., Patel, N., Lee, L.J.: Experimental investigation of flow-induced microvoids during impregnation of unidirectional stitched fiberglass mat. Polym. Compos. 17, 161–170 (1996)

    Article  Google Scholar 

  3. Marin, M., Othman, M.I.A., Abbas, I.A.: An extension of the domain of influence theorem for generalized thermoelasticity of anisotropic material with voids. J. Comput. Theor. Nanosci. 12(8), 1594–1598 (2015)

    Article  Google Scholar 

  4. Othman, M.I.A., Said, S., Marin, M.: A novel model of plane waves of two-temperature fiber-reinforced thermoelastic medium under the effect of gravity with three-phase-lag model. Int. J. Numer. Method H 29(12), 4788–4806 (2019)

    Article  Google Scholar 

  5. Schell, J.S.U., Deleglise, M., Binetruy, C., et al.: Numerical prediction and experimental characterisation of mesoscale-voids in liquid composite moulding. Compos. Part A Appl. Sci. Manuf. 38, 2460–2470 (2007)

    Article  Google Scholar 

  6. Helmus, R., Kratz, J., Potter, K., et al.: An experimental technique to characterize interply void formation in unidirectional prepregs. J. Compos. Mater. 51, 579–591 (2017)

    Article  ADS  Google Scholar 

  7. Hernandez, S., Sket, F., Gonzalez, C., et al.: Optimization of curing cycle in carbon fiber-reinforced laminates: void distribution and mechanical properties. Compos. Sci. Technol. 85, 73–82 (2013)

    Article  Google Scholar 

  8. Campbell, F.C., Mallow, A.R., Browning, C.E.: Porosity in carbon-fiber composites: an overview of causes. J. Adv. Mater. 26, 18–33 (1995)

    Google Scholar 

  9. Naganuma, T., Naito, K., Kyono, J., et al.: Influence of prepreg conditions on the void occurrence and tensile properties of woven glass fiber-reinforced polyimide composites. Compos. Sci. Technol. 69, 2428–2433 (2009)

    Article  Google Scholar 

  10. Gladysz, G.M., Chawla, K.K.: Intrinsic Voids in Polymers. Voids in Materials: From Unavoidable Defects to Designed Cellular Materials, pp. 37–48 (2015)

  11. Sung, B.J., Yethiraj, A.: Structure of void space in polymer solutions. Phys. Rev. E 81(3), 237 (2010)

    Article  Google Scholar 

  12. Liang, J., Chen, R., Zhang, J.F.: Geometry and statistics of voids in lattice polymers. Biophys. J . 82(1), 471A-477A (2002)

    Google Scholar 

  13. Nie, L., Lee, K., Liao, G.L.: Void control in adhesive bonding using thermosetting polymer. Sens. Actuator A Physical 167(2), 398–405 (2011)

    Article  Google Scholar 

  14. Lee, J.W., Wang, C.S., Price, G.E.: Void formation in coagulated rigid-rod polymer thin-films. Polymer 36(5), 955–958 (1995)

    Article  Google Scholar 

  15. Gerhard-Multhaupt, R.: Voided polymer electrets—new materials, new challenges, new chances. In: 11th International Symposium on Electrets (ISE 11), pp. 36–45 (2002)

  16. Murray, B.R., Leen, S.B., Bradaigh, C.M.O.: Void distributions and permeability prediction for rotationally moulded polymers. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 229(5), 403–418 (2015)

    Google Scholar 

  17. Shen, T.F.: Void damage model and service life prediction for solid high polymer. Chin. Sci. Bull. 46(21), 1842–1845 (2001)

    Article  Google Scholar 

  18. Summerscales, J., Fry, S.A.: Poisson ration in fiber-reinforced polymer composites with a high void content. J. Mater. Sci. Lett. 13(12), 912–914 (1994)

    Article  Google Scholar 

  19. Wu, Y.N., Shivpuri, R., Lee, L.J.: Effect of macro and micro voids on elastic properties of polymer composites. J. Reinf. Plast. Compos. 17(15), 1391–1402 (1998)

    Article  Google Scholar 

  20. Hocine, N.A., Hamdi, A., Zairi, F.: Experimental and finite element investigation of void nucleation in rubber-like materials. Int. J. Solids Struct. 48(9), 1248–1254 (2011)

    Article  MATH  Google Scholar 

  21. Tang, J.-M., Lee, W.I., Springer, G.S.: Effects of cure pressure on resin flow, voids, and mechanical properties. J. Compos. Mater. 21, 421–440 (1987)

    Article  ADS  Google Scholar 

  22. Liu, L., Zhang, B.-M., Wang, D.-F., et al.: Effects of cure cycles on void content and mechanical properties of composite laminates. Compos. Struct. 73, 303–309 (2006)

    Article  Google Scholar 

  23. Ghiorse, S.: Effect of void content on the mechanical properties of carbon/epoxy laminates. Sample Q 24, 54–59 (1993)

    ADS  Google Scholar 

  24. Cinquin, J., Triquenaux, V., Rousne, Y.: Porosity influence on organic composite material mechanical properties. In: Proceedings of 16th International Conference on Composite Materials (ICCM16), Japan (2007)

  25. Hou, M., Ye, L., Mai, Y.-W.: Effect of moulding temperature on flexure, impact strength and interlaminar fracture toughness of CF/PEI composite. J. Reinf. Plast. Compos. 15, 1117–1130 (1996)

    Article  Google Scholar 

  26. Flavin, J.N., Knops, R.J.: Some decay estimates in continuum dynamics. J. Elast. 17, 249–264 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Goodman, M.A., Cowin, S.C.: A continuum theory for granular materials. Arch. Ration. Mech. Anal. 44, 249–266 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  28. Chirita, S., Arusoaie, A.: Thermoelastic waves in double porosity materials. Eur. J. Mech. A. Solids 86, 104177 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Fried, E., Gurtin, M.E.: Thermomechanics of the interface between a body and its environment. Contin. Mech. Thermodyn. 19, 253–271 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Marin, M.: Harmonic vibrations in thermoelasticity of microstretch, materials. J. Vib. Acoust. Trans. ASME, 132(4), Art. No. 044501 (2010)

  31. Marin, M.: On weak solutions in elasticity of dipolar bodies with voids. J. Comput. Appl. Math. 82(1–2), 291–297 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Modrea, A., Vlase, S., Calin, M.R., Peterlicean, A.: The influence of dimensional and structural shifts of the elastic constant values in cylinder fiber composites. J. Optoelectron. Adv. Mater. 15, 278–283 (2013)

    Google Scholar 

  33. Vlase, S., Teodorescu-Draghicescu, H., Calin, M.R., Serbina, L.: Simulation of the elastic properties of some fibre-reinforced composite laminates under off-axis loading system. Optoelectron. Adv. Mater. Rapid Commun. 5, 424–429 (2011)

    Google Scholar 

  34. Öchsner, A.: Computational Statics and Dynamics: An Introduction Based on the Finite Element Method. Springer, Singapore (2020)

    Book  MATH  Google Scholar 

  35. Iesan, D.: Thermoelastic Models of Continua. Kluwer, Dordrecht (2004)

    Book  MATH  Google Scholar 

  36. Nguyen, V.T., Hwu, C.: A review on modelling polymer composites via anisotropic viscoelasticity. J. Aeronaut. Astronaut. Aviat. 53(3), 387–402 (2021). https://doi.org/10.6125/JoAAA.202109_53(3).05

    Article  Google Scholar 

  37. Raju, K., Tay, T.E., Tan, V.B.C.: A review of the FE2 method for composites. Multiscale Multidiscip. Model. Exp. Des. 4(1), 1–24 (2021). https://doi.org/10.1007/s41939-020-00087-x

    Article  Google Scholar 

  38. Sharma, A., Bagha, A.K., Shukla, D.K., Bahl, S.: Finite element model updating of metallic and composite structures-A state of the art review. AIMS Mater. Sci. 8(3), 390–415 (2021). https://doi.org/10.3934/matersci.2021025

    Article  Google Scholar 

  39. Jagadeesh, G.V., Setti, S.G.: A review on micromechanical methods for evaluation of mechanical behavior of particulate reinforced metal matrix composites. J. Mater. Sci. 55(23), 9848–9882 (2020). https://doi.org/10.1007/s10853-020-04715-2. (Special Issue)

    Article  ADS  Google Scholar 

  40. Muzel, S.D., Bonhin, E.P., Guimaraes, N.M., Guidi, E.S.: Application of the finite element method in the analysis of composite materials: a review. Polymers (2020). https://doi.org/10.3390/polym12040818

    Article  Google Scholar 

  41. Teodorescu-Draghicescu, H., Stanciu, A., Vlase, S., Scutaru, L., Calin, M.R., Serbina, L.: Finite element method analysis of some fibre-reinforced composite laminates. Optoelectron. Adv. Mater. Rapid Commun. 5, 782–785 (2011)

    Google Scholar 

  42. Stanciu, A., Teodorescu-Draghicescu, H., et al.: Mechanical behavior of CSM450 and RT800 laminates subjected to four-point bend tests. Optoelectron. Adv. Mater. Rapid Commun. 6, 495–497 (2012)

    Google Scholar 

  43. Niculiţă, C., et al.: L. Optimum stacking in a multi-ply laminate used for the skin of adaptive wings. Optoelectron. Adv. Mater. Rapid Commun. 5, 1233–1236 (2011)

    Google Scholar 

  44. Xiao, B., Huang, Q., Wang, Y., Chen, H., Chen, X., Long, G.: A fractal model for capillary flow through a single tortuous capillary with roughened surfaces in fibrous porous media. Fractals 29, 2150017 (2020). https://doi.org/10.1142/S0218348X21500171

    Article  ADS  MATH  Google Scholar 

  45. Xiao, B., Zhang, Y., Jiang, G., Liang, M., Wang, Y., Chen, X., Long, G.: A fractal model for Kozeny–Carman constant and dimensionless permeability of fibrous porous media with roughened surfaces. Fractals 27, 1950116 (2019). https://doi.org/10.1142/S0218348X19501160

    Article  ADS  MathSciNet  Google Scholar 

  46. Zangana, S., Epaarachchi, J., Ferdous, W., Leng, J.: A novel hybridised composite sandwich core with Glass, Kevlar and Zylon fibres–investigation under low-velocity impact. Int. J. Impact Eng. 137, 103430 (2020)

    Article  Google Scholar 

  47. Ferdous, W., Manalo, A., Al Ajarmeh, O., Mohammed, A.A., Salih, C., Yu, P., Khotbehsara, M.M., Schubel, P.: Static behaviour of glass fibre reinforced novel composite sleepers for mainline railway track. Eng. Struct. 229, 111627 (2021)

    Article  Google Scholar 

  48. Nunziato, J.W., Cowin, S.C.: Linear elastic materials with voids. J. Elast. 13, 125–147 (1983)

    Article  MATH  Google Scholar 

  49. Goodman, M.A., Cowin, S.C.: A continuum theory for granular materials. Arch. Rational Mech. Anal. 44, 249–266 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Chang, X., Ren, M.F., Li, T., Guo, X.: Evaluation of mechanical behaviour of unidirectional fibre-reinforced composites considering the void morphology. J. Reinf. Plastics Compos. 36(24), 1817–1828 (2017). https://doi.org/10.1177/0731684417727358

    Article  Google Scholar 

  51. Dong, C.S.: Effects of process-induced voids on the properties of fibre reinforced composites. J. Mater. Sci. Technol. 32(7), 597–604 (2016). https://doi.org/10.1016/j.jmst.2016.04.011

    Article  Google Scholar 

  52. Kovacik, J., Nosko, M., Minarikova, N., Simancik, F., Jerz, J.: Closed-cell powder metallurgical aluminium foams reinforced with 3 vol.% SiC and 3 vol.% graphite. Processes (2021). https://doi.org/10.3390/pr9112031

  53. Bate, A., Motik, B., Grau, B.C., Cucala, D.T., Simancik, F., Horrocks, I.: Consequence-based reasoning for description logics with disjunctions and number restrictions. J. Artif. Intell. Res. 63, 625–690 (2018). https://doi.org/10.1613/jair.1.11257

    Article  MathSciNet  MATH  Google Scholar 

  54. Krizik, P., Balog, M., Matko, I., Svec, P., Sr., Cavojsky, M., Simancik, F.: The effect of a particle-matrix interface on the Young’s modulus of Al-SiC composites. J. Compos. Mater. 50(1), 99–108 (2016). https://doi.org/10.1177/0021998315571028

    Article  ADS  Google Scholar 

  55. Iesan, D.: A theory of thermoelastic materials with voids. Acta Mech. 60, 67–89 (1986)

    Article  Google Scholar 

  56. Rusu, G.: On existence and uniqueness in thermoelasticity of bodies with voids. Bull. Acad. Pol. Sci. 35, 339–346 (1987)

    MATH  Google Scholar 

  57. Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics. Arch. Rational Mech. Anal. 17, 113–147 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Marin, M., Lupu, M.: On harmonic vibrations in thermoelasticity of micropolar bodies. J. Vib. Control 4(5), 507–518 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  59. Zienkiewicz, O.C.: The Finite Element Method: Its Basis and Fundamentals, 6th edn. Elsevier Butterworth-Heinemann, Oxford (2005)

    Google Scholar 

  60. Vlase, S., Teodorescu, P.P.: Elasto-dynamics of a solid with a general “rigid’’ motion using FEM model. Part I. Rom. J. Phys. 58(7–8), 872–881 (2013)

    MathSciNet  Google Scholar 

  61. Vlase, S., Teodorescu, P.P., Itu, C., Scutaru, M.L.: Elasto-dynamics of a solid with a general “rigid’’ motion using FEM model. Part II. Analysis of a double CARDAN joint. Rom. J. Phys. 58(7–8), 882–892 (2013)

    MathSciNet  Google Scholar 

  62. Marin, M., Stan, G.: Weak solutions in elasticity of dipolar bodies with stretch. Carpath. J. Math. 29(1), 33–40 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  63. Bhatti, M.M., Jun, S., Khalique, C.M., Shahid, A., Fasheng, L., Mohamed, M.S.: Lie group analysis and robust computational approach to examine mass transport process using Jeffrey fluid model. Appl. Math. Comput. 421(15), 126936 (2022). https://doi.org/10.1016/j.amc.2022.126936

    Article  MathSciNet  MATH  Google Scholar 

  64. Vlase, S., Nastac, C., Marin, M., Mihalcica, M.: A method for the study of the vibration of mechanical bars systems with symmetries. Acta Technica Napocensis Ser. Appl. Math. Mech. Eng. 60(4), 539–544 (2017)

    Google Scholar 

  65. Bhatti, M.M., Lu, D.Q.: Analytical study of the head-on collision process between hydroelastic solitary waves in the presence of a uniform current. Symmetry 11(3), 333 (2019). https://doi.org/10.3390/sym11030333

    Article  MATH  Google Scholar 

  66. Scutaru, M.L., Vlase, S., Marin, M., Modrea, A.: New analytical method based on dynamic response of planar mechanical elastic systems. Bound. Value Probl. (2020). https://doi.org/10.1186/s13661-020-01401-9

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marin Marin.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlase, S., Marin, M., Öchsner, A. et al. Elastic response of a hollow cylinder with voids and micropolar structure. Continuum Mech. Thermodyn. 34, 855–866 (2022). https://doi.org/10.1007/s00161-022-01095-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-022-01095-7

Keywords

Navigation