Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tailoring solid-state single-photon sources with stimulated emissions

Abstract

The coherent interaction of electromagnetic fields with solid-state two-level systems can yield deterministic quantum light sources for photonic quantum technologies. To date, the performance of semiconductor single-photon sources based on three-level systems is limited mainly due to a lack of high photon indistinguishability. Here we tailor the cavity-enhanced spontaneous emission from a ladder-type three-level system in a single epitaxial quantum dot through stimulated emission. After populating the biexciton (XX) of the quantum dot through two-photon resonant excitation, we use another laser pulse to selectively depopulate the XX state into an exciton (X) state with a predefined polarization. The stimulated XX–X emission modifies the X decay dynamics and improves the characteristics of a polarized single-photon source, such as a source brightness of 0.030(2), a single-photon purity of 0.998(1) and an indistinguishability of 0.926(4). Our method can be readily applied to existing quantum dot single-photon sources and expands the capabilities of three-level systems for advanced quantum photonic functionalities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Operation principle of TPE and TPE with stimulating lasers.
Fig. 2: Purcell-enhanced spontaneous emission mediated by stimulated emission.
Fig. 3: Improved performances of the QD–micropillar single-photon source with stimulated emissions.
Fig. 4: Indistinguishability and linewidth as a function of the delay time between the stimulating lasers and the TPE pulses.
Fig. 5: Optimization of the stimulation pulse parameters and control of the X decay dynamics.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the paper and the Supplementary Information. Source data are provided with this paper. Other relevant data are available from the corresponding authors on reasonable request.

References

  1. W.F. Drake, G. Atomic, Molecular and Optical Physics (Springer, 2006).

  2. M., Fox. Quantum Optics: An Introduction Vol. 15 (Oxford Univ. Press, 2006).

  3. Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

    Article  CAS  Google Scholar 

  4. Uppu, R., Midolo, L., Zhou, X., Carolan, J. & Lodahl, P. Quantum-dot-based deterministic photon–emitter interfaces for scalable photonic quantum technology. Nat. Nanotechnol. 16, 1308–1317 (2021).

    Article  CAS  Google Scholar 

  5. Schulte, C. H. H. et al. Quadrature squeezed photons from a two-level system. Nature 525, 222–225 (2015).

    Article  CAS  Google Scholar 

  6. He, Y. et al. Dynamically controlled resonance fluorescence spectra from a doubly dressed single InGaAs quantum dot. Phys. Rev. Lett. 114, 097402 (2015).

    Article  CAS  Google Scholar 

  7. Chou, C. W., Polyakov, S. V., Kuzmich, A. & Kimble, H. J. Single-photon generation from stored excitation in an atomic ensemble. Phys. Rev. Lett. 92, 213601 (2004).

    Article  CAS  Google Scholar 

  8. Almendros, M. et al. Bandwidth-tunable single-photon source in an ion-trap quantum network. Phys. Rev. Lett. 103, 213601 (2009).

    Article  CAS  Google Scholar 

  9. Pursley, B. C., Carter, S. G., Yakes, M. K., Bracker, A. S. & Gammon, D. Picosecond pulse shaping of single photons using quantum dots. Nat. Commun. 9, 115 (2018).

    Article  CAS  Google Scholar 

  10. Pillet, P., Valentin, C., Yuan, R.-L. & Yu, J. Adiabatic population transfer in a multilevel system. Phys. Rev. A 48, 845–848 (1993).

    Article  CAS  Google Scholar 

  11. Kuhn, A., Hennrich, M. & Rempe, G. Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett. 89, 067901 (2002).

    Article  Google Scholar 

  12. Xu, X. et al. Coherent population trapping of an electron spin in a single negatively charged quantum dot. Nat. Phys. 4, 692–695 (2008).

    Article  CAS  Google Scholar 

  13. Moreau, E. et al. Quantum cascade of photons in semiconductor quantum dots. Phys. Rev. Lett. 87, 183601 (2001).

    Article  Google Scholar 

  14. Hu, Y. Z. et al. Biexcitons in semiconductor quantum dots. Phys. Rev. Lett. 64, 1805–1807 (1990).

    Article  CAS  Google Scholar 

  15. Li, X. et al. An all-optical quantum gate in a semiconductor quantum dot. Science 301, 809–811 (2003).

    Article  CAS  Google Scholar 

  16. Hwang, J. et al. A single-molecule optical transistor. Nature 460, 76–80 (2009).

    Article  CAS  Google Scholar 

  17. Spinnler, C. et al. Optically driving the radiative Auger transition. Nat. Commun. 12, 6575 (2021).

    Article  CAS  Google Scholar 

  18. Liu, F. Ultrafast depopulation of a quantum dot by LA-phonon-assisted stimulated emission. Phys. Rev. B 93, 161407 (2016).

    Article  Google Scholar 

  19. Piatkowski, L. et al. Ultrafast stimulated emission microscopy of single nanocrystals. Science 366, 1240–1243 (2019).

    Article  CAS  Google Scholar 

  20. Kianinia, M. et al. All-optical control and super-resolution imaging of quantum emitters in layered materials. Nat. Commun. 9, 874 (2018).

    Article  Google Scholar 

  21. Kaldewey, T. et al. Far-field nanoscopy on a semiconductor quantum dot via a rapid-adiabatic-passage-based switch. Nat. Photon. 12, 68–72 (2018).

    Article  CAS  Google Scholar 

  22. Liu, S. et al. Dual-resonance enhanced quantum light-matter interactions in deterministically coupled quantum-dot-micropillars. Light Sci. Appl. 10, 158 (2021).

    Article  Google Scholar 

  23. Müller, M., Bounouar, S., Jöns, K. D., Glässl, M. & Michler, P. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photon. 8, 224–228 (2014).

    Article  Google Scholar 

  24. Wang, H. et al. Towards optimal single-photon sources from polarized microcavities. Nat. Photon. 13, 770–775 (2019).

    Article  CAS  Google Scholar 

  25. Huber, T. et al. Filter-free single-photon quantum dot resonance fluorescence in an integrated cavity-waveguide device. Optica 7, 380–385 (2020).

    Article  Google Scholar 

  26. Schweickert, L. et al. On-demand generation of background-free single photons from a solid-state source. Appl. Phys. Lett. 112, 093106 (2018).

    Article  Google Scholar 

  27. Schöll, E. et al. Crux of using the cascaded emission of a three-level quantum ladder system to generate indistinguishable photons. Phys. Rev. Lett. 125, 233605 (2020).

    Article  Google Scholar 

  28. Brod, D. J. et al. Photonic implementation of boson sampling: a review. Adv. Photon. 1, 034001 (2019).

    CAS  Google Scholar 

  29. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006).

    Article  Google Scholar 

  30. Luo, Q. et al. Quantum random number generator based on single-photon emitter in gallium nitride. Opt. Lett. 45, 4224–4227 (2020).

    Article  Google Scholar 

  31. Boto, A. N. et al. Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85, 2733–2736 (2000).

    Article  CAS  Google Scholar 

  32. Kaer, P., Gregersen, N. & Mork, J. The role of phonon scattering in the indistinguishability of photons emitted from semiconductor cavity qed systems. N. J. Phys. 15, 035027 (2013).

    Article  CAS  Google Scholar 

  33. Unsleber, S. et al. Two-photon interference from a quantum dot microcavity: persistent pure dephasing and suppression of time jitter. Phys. Rev. B 91, 075413 (2015).

    Article  Google Scholar 

  34. Thomas, S. E. et al. Bright polarized single-photon source based on a linear dipole. Phys. Rev. Lett. 126, 233601 (2021).

    Article  CAS  Google Scholar 

  35. Wang, H. et al. Near-transform-limited single photons from an efficient solid-state quantum emitter. Phys. Rev. Lett. 116, 213601 (2016).

    Article  Google Scholar 

  36. Zhai, L. et al. Low-noise GaAs quantum dots for quantum photonics. Nat. Commun. 11, 4745 (2020).

    Article  CAS  Google Scholar 

  37. Tomm, N. et al. A bright and fast source of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021).

    Article  CAS  Google Scholar 

  38. Santori, C., Pelton, M., Solomon, G., Dale, Y. & Yamamoto, Y. Triggered single photons from a quantum dot. Phys. Rev. Lett. 86, 1502–1505 (2001).

    Article  CAS  Google Scholar 

  39. Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).

    Article  Google Scholar 

  40. Schimpf, C., Manna, S., Da Silva, S. F. C., Aigner, M. & Rastelli, A. Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 K. Adv. Photon. 3, 065001 (2021).

    Article  Google Scholar 

  41. Uppu, R. et al. Scalable integrated single-photon source. Sci. Adv. 6, eabc8268 (2020).

    Article  Google Scholar 

  42. He, Y.-M. et al. Coherently driving a single quantum two-level system with dichromatic laser pulses. Nat. Phys. 15, 941–946 (2019).

    Article  CAS  Google Scholar 

  43. Koong, Z. X. et al. Coherent dynamics in quantum emitters under dichromatic excitation. Phys. Rev. Lett. 126, 047403 (2021).

    Article  CAS  Google Scholar 

  44. Reindl, M. et al. Phonon-assisted two-photon interference from remote quantum emitters. Nano Lett. 17, 4090–4095 (2017).

    Article  CAS  Google Scholar 

  45. Claudon, J. et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photon. 4, 174–177 (2010).

    Article  CAS  Google Scholar 

  46. Gschrey, M. et al. Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography. Nat. Commun. 6, 7662 (2015).

    Article  CAS  Google Scholar 

  47. Marty, G., Combrié, S., Raineri, F. & De Rossi, A. Photonic crystal optical parametric oscillator. Nat. Photon. 15, 53–58 (2021).

    Article  CAS  Google Scholar 

  48. Naghiloo, M., Abbasi, M., Joglekar, Y. N. & Murch, K. W. Quantum state tomography across the exceptional point in a single dissipative qubit. Nat. Phys. 15, 1232–1236 (2019).

    Article  CAS  Google Scholar 

  49. Nguyen, H. A. et al. Giant nonlinear interaction between two optical beams via a quantum dot embedded in a photonic wire. Phys. Rev. B 97, 201106 (2018).

    Article  CAS  Google Scholar 

  50. Park, Y.-S., Roh, J., Diroll, B. T., Schaller, R. D. & Klimov, V. I. Colloidal quantum dot lasers. Nat. Rev. Mater. 6, 382–401 (2021).

    Article  CAS  Google Scholar 

  51. Sbresny, F. et al. Stimulated generation of indistinguishable single photons from a quantum ladder system. Phys. Rev. Lett. 128, 093603 (2022).

  52. Yan, J. et al. Double-pulse generation of indistinguishable single photons with optically controlled polarization. Nano Lett. 22, 1483–1490 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.L. thanks K. Srinivasan for his continuing support and H. Shen for helpful discussions. This research was supported by National Key R&D Program of China (2018YFA0306101 and 2021YFA1400800), Key-Area Research and Development Program of Guangdong Province (2018B030329001), the Guangdong Special Support Program (2019JC05X397), the National Natural Science Foundation of China (62035017, 11874437, 12074442 and 91836303), the Local Innovative and Research Teams Project of the Guangdong Pearl River Talents Program (2017BT01X121) and the National Super-Computer Center in Guangzhou.

Author information

Authors and Affiliations

Authors

Contributions

J.L. conceived the project. S.-F.L. performed the numerical simulations. Y.Y., X. Su, S.L., X. Shang, H.L., H.H. and H.N. grew the QD wafers. S.-F.L. and X.L. fabricated the devices. J.I.-S. contributed to the theoretical modelling. Y.W., S.-F.L. and J.L. built the set-up and characterized the devices. J.L., S.-F.L. and Y.W. analysed the data. J.L. wrote the manuscript with inputs from all the authors. J.L., S.Y., Z.N. and X.W. supervised the project.

Corresponding author

Correspondence to Jin Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Michael Reimer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Schematic of the setup for optical characterizations.

The setup consisting of 6 functional sections including cryogenic confocal system, pulse shaper, delay generator, spectrometer, filter set and HOM/HBT interferometers. BS: beam splitter, HWP: half-wave plate, LP filter: Long pass filter.

Extended Data Fig. 2 Indistinguishability and linewidth for different delay time.

The raw visibilities of the HOM interference for delay time of -46 ps (a), 18 ps (b) and 317 ps (c), respectively. The linewidths of the emission for delay time of -46 ps (d), 18 ps(e) and 317 ps (f), respectively.

Source data

Extended Data Fig. 3 Comparison of the metrics for the polarized single-source under different excitation schemes.

Excitation scheme, second-order correlation, Hong-Ou-Mandel interference and Blinking behavior for resonant excitation (a), TPE with stimulated lasers (b), LA-phonon assisted excitation (c) and two-color resonant excitation (d).

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–7.

Source data

Source Data Fig. 2

Raw data for Fig. 2.

Source Data Fig. 3

Raw data for Fig. 3.

Source Data Fig. 4

Raw data for Fig. 4.

Source Data Fig. 5

Raw data for Fig. 5.

Source Data Extended Data Fig. 2

Raw data for Fig. E2.

Source Data Extended Data Fig. 3

Raw data for Fig. E

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Liu, S., Li, X. et al. Tailoring solid-state single-photon sources with stimulated emissions. Nat. Nanotechnol. 17, 470–476 (2022). https://doi.org/10.1038/s41565-022-01092-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01092-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing