Skip to main content
Log in

Admissible linear estimators in the general Gauss–Markov model under generalized extended balanced loss function

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

This paper proposes a new generalized extended balanced loss function (GEBLF). Admissibility of linear estimators is characterized in the General Gauss–Markov model with respect to GEBLF. The sufficient and necessary conditions for linear estimators to be admissible with a dispersion matrix possibly singular among the set of linear estimators are obtained. It is stated that the results obtained under special conditions lead to the results known in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akdeniz F, Wan A, Akdeniz E (2005) Generalized Liu type estimators under Zellner’s balanced loss function. Commun Stat Theory Methods 34:1725–1736

    Article  MATH  Google Scholar 

  • Baksalary J, Markiewicz A (1985) Admissible linear estimators in restricted linear models. Linear Algebra Appl 70:9–19

    Article  MATH  Google Scholar 

  • Baksalary J, Markiewicz A (1986) Characterizations of admissible linear estimators in restricted linear models. J Stat Plan Inference 13:395–398

    Article  MATH  Google Scholar 

  • Baksalary J, Markiewicz A (1988) Admissible linear estimators in the general Gauss- Markov model. J Stat Plan Inference 19:349–359

    Article  MATH  Google Scholar 

  • Cao M (2009) Φ admissibility for linear estimators on regression coefficients in a general multivariate linear model under balanced loss function. J Stat Plan Inference 139:3354–3360

    Article  MATH  Google Scholar 

  • Cao M (2014) Admissibility of linear estimators for the stochastic regression coefficient in a general Gauss–Markoff model under a balanced loss function. J Multivar Anal 124:25–30

    Article  MATH  Google Scholar 

  • Cao M, Kong F (2013) General admissibility for linear estimators in a general multivariate linear model under balanced loss function. ACTA Math. Sin-Engl Ser 29:1823–1832

    MATH  Google Scholar 

  • Cao M, Shena G (2016) Linearly admissible estimators of mean vector with respect to balanced loss function in multivariate statistics. Commun Stat Theory Methods 45:1063–1069

    Article  MATH  Google Scholar 

  • Cao M, He D (2017) Admissibility of linear estimators of the common mean parameter in general linear models under a balanced loss function. J Multivar Anal 153:246–254

    Article  MATH  Google Scholar 

  • Cao M, He D (2019) Linearly admissible estimators on linear functions of regression coefficient under balanced loss function. Commun Stat Theory Methods 48:2700–2706

    Article  MATH  Google Scholar 

  • Chaturvedi A, Shalabh (2014) Bayesian estimation of regression coefficients under extended balanced loss function. Commun Stat Theory Methods 43:4253–4264

    Article  MATH  Google Scholar 

  • Chen X, Chen G, Wu Q, Zhao L (1985) Parameter estimation theory for linear models. Beijing Science Press, Beijing

    Google Scholar 

  • Cohen A (1966) All admissible linear estimates of the mean vector. Ann Math Stat 37:458–463

    Article  MATH  Google Scholar 

  • Dey D, Ghosh M, Strawderman W (1999) On estimation with balanced loss functions. Stat Probab Lett 45:97–101

    Article  MATH  Google Scholar 

  • Dong L, Wu Q (1988) Necessary and sufficient conditions for linear estimators of stochastic regression coefficients and parameters to be admissible under quadratic loss. Acta Math. Sinica 31:145–157

  • Giles J, Giles D, Ohtani K (1996) The exact risks of some pre-test and stein-type regression estimators under balanced loss. Commun Stat Theory Methods 25(12):2901–2919

    Article  MATH  Google Scholar 

  • Groß J (2003) Linear regression. Springer, Berlin

    Book  MATH  Google Scholar 

  • Groß J, Markiewicz A (2004) Characterizations of admissible linear estimators in the linear model. Linear Algebra Appl 388:239–248

    Article  MATH  Google Scholar 

  • Gruber D (2004) The efficiency of shrinkage estimators with respect to Zellner’s balanced loss function. Commun Stat Theory Methods 33:235–249

    Article  MATH  Google Scholar 

  • Hoffmann K (1995) All admissible linear estimators of the regression parameter vector in the case of an arbitrary parameter subset. J Stat Plan Inference 48:371–377

    Article  MATH  Google Scholar 

  • Hu GK (2007) Estimation theory of regression coefficients of linear regression models under balanced loss. https://doi.org/10.7666/d.y1208646.(Chinese series).

  • Hu G, Peng P (2010) Admissibility for linear estimators of regression coefficient in a general Gauss–Markov model under balanced loss function. J Stat Plan Inference 140:3365–3375

    Article  MATH  Google Scholar 

  • Jafari Jozani M, Marchand E, Parsian A (2006) On estimation with weighted balanced-type loss function. Stat Probab Lett 76:773–780

    Article  MATH  Google Scholar 

  • Kaçıranlar S, Dawoud I (2019) The optimal extended balanced loss function estimators. J Comput Appl Math 345:86–98

    Article  MATH  Google Scholar 

  • Klonecki W, Zontek S (1988) On the structure of admissible linear estimators. J Multivar Anal 24:11–30

    Article  MATH  Google Scholar 

  • Lehmann E, Casella G (2005) Theory of point estimation, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Liu G, Yin H (2020) Admissibility in general Gauss–Markov model with respect to an ellipsoidal constraint under weighted balanced loss. Commun Stat Theory Methods. https://doi.org/10.1080/03610926.2020.1758140

    Article  MATH  Google Scholar 

  • Lamotte L (1982) Admissiblity in linear estimation. Ann Stat 10:235–255

    Article  Google Scholar 

  • Lu C, Shi N (2002) Admissible linear estimators in linear models with respect to inequality constraints. Linear Algebra Appl 354:187–194

    Article  MATH  Google Scholar 

  • Markiewicz A (1996) Characterization of general ridge estimators. Stat Probab Lett 27:145–148

    Article  MATH  Google Scholar 

  • Mathew T, Rao C, Sinha B (1984) Admissible linear estimation in singular linear models. Commun Stat Theory Methods 13:3033–3045

    Article  MATH  Google Scholar 

  • Mirezi B, Kaçıranlar S (2021) Characterization of linearly admissible estimators under extended balanced loss function. Kybernetika 57(4):613–627

    MATH  Google Scholar 

  • Ohtani K (1998) The exact risk of a weighted average estimator of the ols and stein-rule estimators in regression under balanced loss. Stat Risk Model 16:35–46

    MATH  Google Scholar 

  • Ohtani K (1999) Inadmissibility of the Stein-rule estimator under the balanced loss function. J Econ 88:193–201

    Article  MATH  Google Scholar 

  • Ohtani K, Giles D, Giles J (1997) The exact risk performance of a pre-test estimator in a heteroskedastic linear regression model under the balanced loss function. Econ Rev 16:119–130

    Article  MATH  Google Scholar 

  • Özbay N, Kaçıranlar S (2017) The performance of the adaptive optimal estimator under the extended balanced loss function. Commun Stat Theory Methods 46:11315–11326

    Article  MATH  Google Scholar 

  • Özbay N, Kaçıranlar S (2019) Risk performance of some shrinkage estimators. Commun Stat Simul Comput. https://doi.org/10.1080/03610918.2018.1554116

    Article  MATH  Google Scholar 

  • Rao C (1976) Estimation of parameters in a linear model. Ann Stat 4:1023–1037

    Article  MATH  Google Scholar 

  • Rodrigues J, Zellner A (1994) Weighted balanced loss function and estimation of the mean time to failure. Commun Stat Theory Methods 23:3609–3616

    Article  MATH  Google Scholar 

  • Shalabh S (1995) Performance of Stein-rule procedure for simultaneous prediction of actual and average values of study variable in linear regression model. Bull Int Stat Inst 56:1375–1390

    Google Scholar 

  • Shalabh, Toutenburg H, Heumann C (2009) Stein-rule estimation under an extended balanced loss function. J Stat Comput Simul 79:1259–1273

  • Stepniak C (1989) Admissible linear estimators in mixed linear models. J Multivar Anal 31:90–106

    Article  MATH  Google Scholar 

  • Wu Q (1986) Admissibility of linear estimators of regression coefficient in a general Gauss-Markov model. Acta Math Sci 9:251–256

    MATH  Google Scholar 

  • Wan A (1994) Risk comparison of inequality constrained least squares and other related estimators under balanced loss. Econ Lett 46:203–210

    Article  MATH  Google Scholar 

  • Xu X, Wu Q (2000) Linear admissible estimators of regression coefficient under balanced loss. Acta Math Sci 20:468–473

    MATH  Google Scholar 

  • Zellner A (1994) Bayesian and non-Bayesian estimation using balanced loss functions. Statistical decision theory and related topics V. Springer, New York, pp 377–390

    MATH  Google Scholar 

  • Zhang S, Gui W (2014) Admissibility in general linear model with respect to an inequality constraint under balanced loss. J Inequal Appl. https://doi.org/10.1186/1029-242X-2014-70

    Article  MATH  Google Scholar 

  • Zinodiny S, Rezaei S, Nadarajah S (2017) Minimax estimation of the mean of the multivariate normal distribution. Commun Stat Theory Methods 46:1422–1432

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their valuable comments and constructive suggestions which substantially improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Buatikan Mirezi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: The proof of Eq. (10) in Theorem 1

Proof

If \(\beta_{*} = Fy \in {\mathcal{F}}^{h}\), using some properties of trace and Lemma 1, then risk function of GEBLF is given by.

$$ \begin{aligned} R\left( {Fy;\beta ,\sigma^{2} } \right) & = \sigma^{2} tr\left[ \lambda_{1} \left( {I_{n} - XF} \right)^{\prime } T^{ + } \left( {I_{n} - XF} \right)V \right. \\ &\quad \left. + \lambda_{2} (F^{\prime}\tilde{S}FV) + \lambda_{3} \left( {\left( {XF - I_{n} } \right)^{\prime } T^{ + } XFV} \right) \right] \hfill \\ & \quad + \beta^{\prime}\left( {FX - I_{p} } \right)^{\prime } \left[ {\lambda_{1} X^{\prime}T^{ + } X + \lambda_{2} \tilde{S} + \lambda_{3} X^{\prime}T^{ + } X} \right]\left( {FX - I_{p} } \right)\beta \,, \hfill \\ \end{aligned} $$

Let \(B = \lambda_{1} X^{\prime}T^{ + } X + \lambda_{2} \tilde{S} + \lambda_{3} X^{\prime}T^{ + } X = \lambda_{2} \tilde{S} + (1 - \lambda_{2} )S_{T}\), where \(S_{T} = X^{\prime}T^{ + } X\). In this case, we get

$$ \begin{array}{*{20}l} {R\left( {Fy;\beta ,\sigma ^{2} } \right) = \sigma ^{2} tr\left[ {F^{\prime}BF - \left( {1 + \lambda _{1} - \lambda _{2} } \right)T^{ + } XF} \right]V + \sigma ^{2} tr(\lambda _{1} T^{ + } V)} \hfill \\ {\qquad\;\;\; \quad \quad \quad \quad \; + \beta ^{\prime}\left( {FX - I_{p} } \right)^{\prime } B\left( {FX - I_{p} } \right)\beta } \hfill \\ \end{array} . $$

Since \(0 \le \lambda_{1} ,\lambda_{2} \le 1\), we can find such a \(w\) denoted by \(w = {{\left( {1 + \lambda_{1} - \lambda_{2} } \right)} \mathord{\left/ {\vphantom {{\left( {1 + \lambda_{1} - \lambda_{2} } \right)} 2}} \right. \kern-0pt} 2}\), where \(0 \le w \le 1\). So, Eq. (10) can be rewritten as follows for \(0 \le \lambda_{1} ,\lambda_{2} \le 1\):

$$ \begin{aligned} &R\left( {Fy;\beta ,\sigma^{2} } \right) = \sigma^{2} tr\left[ {\left( {F - wB^{ - 1} X^{\prime}T^{ + } } \right)^{\prime } B\left( {F - wB^{ - 1} X^{\prime}T^{ + } } \right)} \right]V \hfill \\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \sigma^{2} tr(\lambda_{1} T^{ + } V - w^{2} T^{ + } XB^{ - 1} X^{\prime}T^{ + } ) + \beta^{\prime}\left( {FX - I_{p} } \right)^{\prime } B\left( {FX - I_{p} } \right)\beta \,. \hfill \\ \end{aligned} $$
(31)

If we take \(F^{*} = B^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}} \tilde{F} = B^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}} \left( {F - wB^{ - 1} X^{\prime}T^{ + } } \right)\)\(C = B^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}} (I_{p} - wB^{ - 1} S_{T} )\), \(B = B^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}} B^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}}\).

then (31) equal to

$$ \begin{array}{*{20}l} {R\left( {Fy;\beta ,\sigma ^{2} } \right) = \sigma ^{2} tr(F^{*} VF^{{*\prime }} ) + \sigma ^{2} tr(\lambda _{1} T^{ + } V - w^{2} T^{ + } XB^{{ - 1}} X^{\prime } T^{ + } )} \hfill \\ {\quad\; \qquad \quad \quad \quad\; \quad + \beta ^{\prime } \left\{ {F^{*} X - C} \right\}^{\prime } \left\{ {F^{*} X - C} \right\}\beta } \hfill \\ \end{array} . $$

Appendix 2: The proof of Eq. (21) in Corollary 2

$$ \begin{gathered} P_{XT} = X\left[ {X^{\prime}\left( {V + XX^{\prime}} \right)^{ - 1} X} \right]^{ - } X^{\prime}\left( {V + XX^{\prime}} \right)^{ - 1} \hfill \\ \,\,\,\,\,\,\,\,\, = X\left[ {S_{V} - S_{V} \left( {I + S_{V} } \right)^{ - 1} S_{V} } \right]^{ - } X^{\prime}\,\left[ {V^{ - 1} - V^{ - 1} X\left( {I + S_{V} } \right)^{ - 1} X^{\prime}V^{ - 1} } \right] \hfill \\ \,\,\,\,\,\,\,\,\, = XS_{V}^{ - } \left( {I + S_{V} } \right)\left( {I + S_{V} } \right)^{ - 1} X^{\prime}V^{ - 1} \hfill \\ \,\,\,\,\,\,\,\,\, = XS_{V}^{ - } X^{\prime}V^{ - 1} \,\, = P_{XV} \, \hfill \\ \end{gathered} $$

Appendix 3: The proof of Eq. (22) in Theorem 4

Let \(B = \lambda_{2} \tilde{S} + (1 - \lambda_{2} )S_{T}\). Then

$$ \begin{array}{*{20}l} {R\left( {Fy + f;\beta ,\sigma^{2} } \right) = E\left[ {\lambda_{1} \left( {y - X(Fy + f)} \right)^{\prime } T^{ + } \left( {y - X(Fy + f)} \right)} \right]} \hfill \\ {\quad + E\left[ {\lambda_{2} \left( {Fy + f - \beta } \right)^{\prime } \tilde{S}\left( {Fy + f - \beta } \right) + \lambda_{3} \left( {X(Fy + f) - y} \right)^{\prime } T^{ + } X\left( {Fy + f - \beta } \right)} \right]} \hfill \\ {\quad = \sigma^{2} tr\left[ {\lambda_{1} \left( {I_{n} - XF} \right)^{\prime } T^{ + } \left( {I_{n} - XF} \right) + \lambda_{2} \left( {F^{\prime}\tilde{S}F} \right) + \lambda_{3} \left( {\left( {XF - I_{n} } \right)^{\prime } T^{ + } XF} \right)} \right]V} \hfill \\ {\quad + \left[ {\left( {FX - I_{p} } \right)\beta + f} \right]^{\prime } \left[ {\lambda_{1} S_{T} + \lambda_{2} \tilde{S} + \lambda_{3} S_{T} } \right]\left[ {\left( {FX - I_{p} } \right)\beta + f} \right]} \hfill \\ {\quad = \sigma^{2} tr\left[ {\lambda_{1} \left( {I_{n} - XF} \right)^{\prime } T^{ + } \left( {I_{n} - XF} \right) + \lambda_{2} \left( {F^{\prime}\tilde{S}F} \right) + \lambda_{3} \left( {\left( {XF - I_{n} } \right)^{\prime } T^{ + } XF} \right)} \right]V} \hfill \\ {\quad + \left[ {\left( {FX - I_{p} } \right)\beta + f} \right]^{\prime } B\left[ {\left( {FX - I_{p} } \right)\beta + f} \right].} \hfill \\ \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirezi, B., Kaçıranlar, S. Admissible linear estimators in the general Gauss–Markov model under generalized extended balanced loss function. Stat Papers 64, 73–92 (2023). https://doi.org/10.1007/s00362-022-01298-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-022-01298-9

Keywords

Navigation