Skip to main content
Log in

Solutions for the null-surface formulation in \(2+1\) dimensions leading to spacetimes of Petrov types I, II, and D

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The only nontrivial exact solutions reported to-date for the field equations of the null-surface formulation (NSF) of general relativity are for the (\(2+1\))-dimensional version of the theory, where three such solutions are known. This work presents a new family of NSF solutions. The corresponding general relativistic spacetimes are shown to span three different Petrov types, depending upon the choices that are made for various parameters. All of the scalar invariants for the spacetimes are constant, as are all of the eigenvalues of the Cotton-York tensor. The physical nature of a possible source term is discussed in detail, and two of the previously known NSF solutions are presented as special cases. The new family of solutions was derived by assuming additive separability—meaning that the dependent variable in the field equations is represented as a sum. This effectively turns the main NSF field equation (which is a partial differential equation) into an ordinary differential equation that is exactly solvable. The possibility of adapting this approach to the (\(3+1\))-dimensional version of the NSF is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data Availability Statement

Not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Kozameh, C.N., Newman, E.T.: J. Math. Phys. 24, 2481 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  2. Frittelli, S., Kozameh, C.N., Newman, E.T.: J. Math. Phys. 36, 4975 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  3. Frittelli, S., Kozameh, C.N., Newman, E.T.: J. Math. Phys. 36, 4984 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  4. Frittelli, S., Kozameh, C.N., Newman, E.T.: J. Math. Phys. 36, 5005 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  5. Frittelli, S., Kozameh, C.N., Newman, E.T.: J. Math. Phys. 36, 6397 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  6. Gallo, E.: Class. Quantum Gravit. 29, 145004 (2012)

    Article  ADS  Google Scholar 

  7. Forni, D.M., Iriondo, M., Kozameh, C.N.: J. Math. Phys. 41, 5517 (2000)

    Article  ADS  Google Scholar 

  8. Forni, D.M., Iriondo, M., Kozameh, C.N., Parisi, M.F.: J. Math. Phys. 43, 1584 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  9. Tanimoto, M.: On the Null Surface Formalism—Formulation in Three Dimensions and Gauge Freedom. arXiv:gr-qc/9703003 (1997)

  10. Silva-Ortigoza, G.: Gen. Relativ. Gravit. 32, 2243 (2000)

    Article  ADS  Google Scholar 

  11. Cartan, E.: C. R. Acad. Sci. 206, 1425 (1938)

    Google Scholar 

  12. Cartan, E.: Rev. Mat. Hispano-Amer. 4, 1 (1941)

    Google Scholar 

  13. Cartan, E.: Ann. Sc. Ec. Norm. Sup. (3) 60, 1 (1943)

    Article  Google Scholar 

  14. Chern, S.-S.: The Geometry of the differential equation \(y^{\prime \prime \prime } = F(x, y, y^{\prime }, y^{\prime \prime })\). In: Selected Papers. Springer, New York (1978). Original version: Science Reports Nat. Tsing Hua Univ. 4, 97 (1940)

  15. Harriott, T.A., Williams, J.G.: Gen. Relativ. Gravit. 46, 1666 (2014)

    Article  ADS  Google Scholar 

  16. Harriott, T.A., Williams, J.G.: Solutions in the \(2+1\) null-surface formulation. In: Bicak, J., Ledvinka, T. (eds.) Relativity and Gravitation 100 Years After Einstein in Prague. Springer Proceedings in Physics, vol. 157. Springer, New York (2014)

    Chapter  Google Scholar 

  17. Harriott, T.A., Williams, J.G.: Gen. Relativ. Gravit. 50, 39 (2018)

    Article  ADS  Google Scholar 

  18. Harriott, T.A., Williams, J.G.: Gen. Relativ. Gravit. 51, 98 (2019)

    Article  ADS  Google Scholar 

  19. Weinberg, S.: Gravitation and Cosmology. John Wiley, New York (1972)

    Google Scholar 

  20. Chow, D.D.K., Pope, C.N., Sezgin, E.: Class. Quantum Gravit. 27, 105002 (2010)

    Article  ADS  Google Scholar 

  21. Podolsky, J., Svarc, R., Maeda, H.: Class. Quantum Gravit. 36, 015009 (2019)

    Article  ADS  Google Scholar 

  22. Garcia-Diaz, A.A.: Exact Solutions in Three-Dimensional Gravity. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  23. Madsen, M.S.: Astrophys. Space. Sci. 113, 205 (1985)

    Article  ADS  Google Scholar 

  24. Madsen, M.S.: Class. Quantum Gravit. 5, 627 (1988)

    Article  ADS  Google Scholar 

  25. Faraoni, V.: Phys. Rev. D 85, 024040 (2012)

    Article  ADS  Google Scholar 

  26. Ellis, G.F.R., Maartens, R., MacCallum, M.A.H.: Relativistic Cosmology. Cambridge University Press, Cambridge (2021)

    MATH  Google Scholar 

  27. Barrow, J.D., Shaw, D.J., Tsagas, C.G.: Class. Quantum Gravit. 23, 5291 (2006)

    Article  ADS  Google Scholar 

  28. MacCallum, M.A.H., Stewart, J.M., Schmidt, B.G.: Commun. Math. Phys. 17, 343 (1970)

    Article  ADS  Google Scholar 

  29. Cavaglià, M.: Phys. Rev. D 57, 5295 (1998)

    Article  ADS  Google Scholar 

  30. Frittelli, S., Kozameh, C.N., Newman, E.T.: Commun. Math. Phys. 223, 383 (2001)

    Article  ADS  Google Scholar 

  31. Frittelli, S., Kozameh, C.N., Newman, E.T., Nurowski, P.: Class. Quantum Gravit. 19, 5235 (2002)

    Article  ADS  Google Scholar 

  32. Gallo, E., Marciano-Melchor, M., Silva-Ortigoza, G.: Int. J. Mod. Phys. D 16, 1725 (2007)

    Article  ADS  Google Scholar 

  33. Newman, E.T., Penrose, R.: J. Math. Phys. 7, 863 (1966)

    Article  ADS  Google Scholar 

  34. Goldberg, J.N., Macfarlane, A.J., Newman, E.T., Rohrlich, F., Sudarshan, E.C.G.: J. Math. Phys. 8, 2155 (1967)

    Article  ADS  Google Scholar 

  35. Torres del Castillo, G.F.: 3-D Spinors, Spin-Weighted Functions and their Applications. Birkhauser, Boston (2003)

    Book  Google Scholar 

  36. Bordcoch, M., Kozameh, C.N., Rojas, T.A.: Phys. Rev. D 94, 104051 (2016)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Alan Coley for a number of helpful comments. We would also like to acknowledge the generous hospitality of Dr. Ted Newman during our visits to the University of Pittsburgh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Williams.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Christoffel symbols and curvature tensors

Appendix: Christoffel symbols and curvature tensors

The Christoffel symbols are

$$\begin{aligned} \Gamma ^{u}_{\; uu}= & {} -a\Gamma ^{u}_{\; \omega \omega } = -a\Gamma ^{\omega }_{\; \omega \rho } = 2^{-1} ay^{-1}\, \partial _{\rho }y , \\ \Gamma ^{u}_{\; u\omega }= & {} 8^{-1} Ay^{-1/2} + ay^{-3/2} , \\ \Gamma ^{u}_{\; u\rho }= & {} \Gamma ^{u}_{\; \omega \rho } = \Gamma ^{u}_{\; \rho \rho } = \Gamma ^{\omega }_{\; \rho \rho } = 0 , \\ \Gamma ^{\omega }_{\; uu}= & {} 2^{-1}Aay^{-1/2} + 3a^{2}y^{-3/2} - 2^{-1} kay^{1/2} , \\ \Gamma ^{\omega }_{\; u\omega }= & {} -(16^{-1}A + ay^{-1})\, \partial _{\rho }y , \\ \Gamma ^{\omega }_{\; u\rho }= & {} 8^{-1} Ay^{-1/2} + ay^{-3/2} , \\ \Gamma ^{\omega }_{\; \omega \omega }= & {} -4^{-1} Ay^{-1/2} - ay^{-3/2} + 2^{-1}ky^{1/2} , \\ \Gamma ^{\rho }_{\; uu}= & {} -2^{-1} a\, (-4^{-1} A + 3ay^{-1} + 2^{-1} ky)\, \partial _{\rho }y , \\ \Gamma ^{\rho }_{\; u\omega }= & {} -(16^{-1}Aky^{3/2} + a^{2}y^{-3/2} + kay^{1/2}) , \\ \Gamma ^{\rho }_{\; u\rho }= & {} (16^{-1}A - ay^{-1})\, \partial _{\rho }y , \\ \Gamma ^{\rho }_{\; \omega \omega }= & {} (2^{-1}\, ay^{-1} + 4^{-1}\, ky)\, \partial _{\rho }y , \\ \Gamma ^{\rho }_{\; \omega \rho }= & {} 8^{-1} Ay^{-1/2} - 2^{-1}ky^{1/2} , \\ \Gamma ^{\rho }_{\; \rho \rho }= & {} -y^{-1}\, \partial _{\rho }y .\\ \end{aligned}$$

Using the abbreviation \(W := A + 8a\, y^{-1}\), the Ricci tensor can be written as a matrix, \([R_{ij}]\):

$$\begin{aligned}{}[R_{ij} ] = \left( \begin{array}{ccc} \frac{1}{256}\, (A^{3} + W^{3}) + \frac{1}{8}\, A k a &{} -\frac{1}{64}\, A W\, y^{-1/2}\, \partial _{\rho }y &{} \frac{1}{32}\, W^{2}\, y^{-1} \\ -\frac{1}{64}\, A W\, y^{-1/2}\, \partial _{\rho }y &{} -\frac{1}{32}\, A^{2}\, y^{-1} + \frac{1}{8}\, A k &{} -\frac{1}{8}\, A\, y^{-3/2}\, \partial _{\rho }y \\ \frac{1}{32}\, W^{2}\, y^{-1} &{} -\frac{1}{8}\, A\, y^{-3/2}\, \partial _{\rho }y &{} \frac{1}{4}\, W\, y^{-2} \\ \end{array} \right) . \end{aligned}$$

The scalar curvature, R, is given in Eq. (24).

The components of the Einstein tensor, \(G_{ij} = R_{ij} - \frac{1}{2} R g_{ij}\), are

$$\begin{aligned} G_{uu}= & {} \frac{1}{256} (A^{3} + W^{3}) + \frac{1}{8} R (A + 12ay^{-1}) + \frac{1}{8} Aka , \\ G_{u\omega }= & {} -\frac{1}{64} (AW + 16R) y^{-1/2} \, \partial _{\rho } y , \\ G_{u\rho }= & {} \frac{1}{32} y^{-1} (W^{2} + 16R) , \\ G_{\omega \omega }= & {} -\frac{1}{32} y^{-1} (A^{2} + 16R) + \frac{1}{8} Ak , \\ G_{\omega \rho }= & {} -\frac{1}{8} Ay^{-3/2} \, \partial _{\rho } y , \\ G_{\rho \rho }= & {} \frac{1}{4} W y^{-2} . \end{aligned}$$

The covariant derivatives of the velocity can be written as a matrix, \([ U_{i \, ; \, j} ]\):

$$\begin{aligned} \left( \begin{array}{ccc} -\frac{1}{8} a^{1/2} y^{-1/2}\, W\, \partial _{\rho }y &{} -\frac{1}{64} a^{-1/2}\, W^{2} &{} -\frac{1}{16} a^{-1/2} y^{-1/2}\, W\, \partial _{\rho }y \\ a^{-1/2} \left( \frac{1}{2} ka - \frac{1}{64} W^{2} + a^{2} y^{-2} \right) &{} \frac{1}{16} a^{-1/2} y^{-1/2}\, A\, \partial _{\rho }y &{} \frac{1}{2}a^{-1/2} y^{-1} \left( ky - \frac{1}{4} A \right) \\ -a^{1/2} y^{-3/2}\, \partial _{\rho }y &{} -\frac{1}{8} a^{-1/2} y^{-1}\, W &{} -\frac{1}{2} a^{-1/2} y^{-3/2}\, \partial _{\rho }y \\ \end{array} \right) . \end{aligned}$$

The acceleration vector, \({\dot{U}}_{i}\), is defined by \({\dot{U}}_{i} := U_{i\, ;\, j}\, U^{j}\), and its components are

$$\begin{aligned} {\dot{U}}^{u}= & {} \left( 1 - \frac{1}{16} Wa^{-1}y \right) \, \partial _{\rho }y , \\ {\dot{U}}^{\omega }= & {} \frac{1}{4} Wy^{1/2} \left( 1 - \frac{1}{16} Wa^{-1}y \right) - \frac{1}{2} Ra^{-1}y^{3/2} , \\= & {} a^{-1} y^{3/2} \left( -R + \frac{1}{2} ka + a^{2}y^{-2} \right) , \\ {\dot{U}}^{\rho }= & {} - a \left( 1 - \frac{1}{16} Wa^{-1}y \right) \, \partial _{\rho }y - \frac{1}{4} Ra^{-1}y^{2} \, \partial _{\rho }y . \end{aligned}$$

The components of the heat-flux vector \(q_{i}\) are

$$\begin{aligned} q_{u}= & {} \frac{1}{64\kappa } a^{-3/2} y^{3/2} AWR , \\ q_{\omega }= & {} -\frac{1}{16\kappa } a^{-3/2} y AR \, \partial _{\rho }y , \\ q_{\rho }= & {} \frac{1}{8\kappa } a^{-3/2} y^{1/2} AR . \end{aligned}$$

The only nonzero components of the vorticity tensor, \(\omega _{ij}\), are

$$\begin{aligned} \omega _{u \omega }= & {} -\omega _{\omega u} = -\frac{1}{16} WRa^{-3/2}y , \\ \omega _{\omega \rho }= & {} -\omega _{\rho \omega } = \frac{1}{2} Ra^{-3/2} . \end{aligned}$$

The components of the shear tensor, \(\sigma _{ij}\), are

$$\begin{aligned} \sigma _{uu}= & {} -\frac{1}{1024} A W^{2}a^{-3/2}y^{3/2} \, \partial _{\rho } y , \\ \sigma _{u \omega }= & {} \sigma _{\omega u} = \frac{1}{128} W^{2}k a^{-3/2}y^{2} - \frac{1}{16} WRa^{-3/2}y , \\ \sigma _{u \rho }= & {} \sigma _{u \rho } = -\frac{1}{128} AWa^{-3/2} y^{1/2} \, \partial _{\rho } y , \\ \sigma _{\omega \omega }= & {} -\frac{1}{32} Aka^{-3/2}y^{3/2}\, \partial _{\rho } y , \\ \sigma _{\omega \rho }= & {} \sigma _{\rho \omega } = \frac{1}{16} Wka^{-3/2}y - \frac{1}{2} Ra^{-3/2} , \\ \sigma _{\rho \rho }= & {} -\frac{1}{16} Aa^{-3/2}y^{-1/2}\, \partial _{\rho } y . \end{aligned}$$

The components of the Cotton-York tensor, \(C^{i}_{\, j}\), are defined in Eq. (27) and are as follows:

$$\begin{aligned} C^{u}_{\;\; u}= & {} -\frac{1}{4} W \left( R + \frac{1}{32} AW \right) , \\= & {} -\frac{1}{4} A \left( R + \frac{1}{32} W^{2} \right) - 2 R a y^{-1} , \\ C^{u}_{\;\; \omega }= & {} y^{-1/2} \left( \frac{1}{2} R + \frac{1}{32} A^{2} \right) \partial _{\rho } y , \\ C^{u}_{\;\; \rho }= & {} -R y^{-1} - \frac{1}{16} AW y^{-1} , \\ C^{\omega }_{\;\; u}= & {} ay^{-1/2} \left( \frac{1}{2} R + \frac{1}{32} AW \right) \partial _{\rho } y , \\ C^{\omega }_{\;\;\omega }= & {} \frac{1}{128} A^{2} W + R ay^{-1} , \\ C^{\omega }_{\;\; \rho }= & {} \frac{1}{4} A a y^{-3/2}\, \partial _{\rho } y , \\ C^{\rho }_{\;\; u}= & {} \frac{1}{128} A W^{2} a - 2 R a^{2} y^{-1} + \frac{1}{2} R W a , \\ C^{\rho }_{\;\; \omega }= & {} -ay^{-1/2} \left( \frac{1}{2} R + \frac{1}{32} A^{2} \right) \partial _{\rho } y , \\ C^{\rho }_{\;\; \rho }= & {} \frac{1}{2} A a^{2} y^{-2} - 2 k a^{2} y^{-1} + \frac{1}{4} AR + 3 R a y^{-1} , \\= & {} \frac{1}{16} AW ay^{-1} + \frac{1}{4} AR + R a y^{-1} . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harriott, T.A., Williams, J.G. Solutions for the null-surface formulation in \(2+1\) dimensions leading to spacetimes of Petrov types I, II, and D. Gen Relativ Gravit 54, 34 (2022). https://doi.org/10.1007/s10714-022-02922-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-02922-7

Keywords

Navigation