Skip to main content
Log in

Influence of the Schwinger effect on radiatively corrected Higgs inflationary magnetogenesis

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study the generation of magnetic fields in the Higgs inflation model with the axial coupling in order to break the conformal invariance of the Maxwell action and produce strong magnetic fields. We consider radiatively corrected Higgs inflation potential of our previous work in (Kamarpour, M.: Magnetogenesis in Higgs inflation model. General Relat. Gravit. (2021). https://doi.org/10.1007/s10714-021-02824-0). In comparison to the Starobinsky potential, we obtain an extra term as a one loop correction and determine the spectrum of generalized electromagnetic fields. For two values of coupling parameter \(\chi _{1}=5\times 10^{9}\) and \(\chi _{1}=7.5\times 10^{9}\), the back-reaction is weak and our analysis is valid. When we switch on the Schwinger effect,there is no difference in background inflaton field. Therefore, for range of parameters considered and analyzed in this model, the Schwinger effect in Radiatively corrected Higgs model is quite negligible and play no roles in magnetogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

The Author confirms that this manuscript has no associated data in a data repository.

References

  1. Bezrukov, F.L., Shaposhnikov, M.: The standard model Higgs Boson as the inflation. Phys. Lett. B 659, 703706 (2008)

    Article  Google Scholar 

  2. Subramanian, K.: The origin, evolution and signatures of primordial magnetic fields. Rep. Prog. Phys. 79, 076901 (2016)

    Article  ADS  Google Scholar 

  3. Vilchinskii, S., Sobol, O., Gorbar, E.V., Rudennok, I.: Magnetogenesis during inflation and preheating in the Starobinsky model. Phys. Rev. D 95, 083509 (2017)

    Article  ADS  Google Scholar 

  4. Martin, J., Yokoyama, J.: Generation of large-scale magnetic fields in single-field inflation. JCAP 01, 025 (2008)

    Article  ADS  Google Scholar 

  5. Ketov, S.V.: Modified Supergravity and Early Universe: the Meeting Point of Cosmology and High-Energy Physics arXiv:1201.2239v3 [hep-th]

  6. Savchenko, O., Shtanov, Y.: Magnetogenesis by non-minimal coupling to gravity in the Starobinsky inflationary model, arXiv:1808.06193v1

  7. Barvinsky, A., Kamenshchik, A.Y., Starobinsky, A.: Inflation scenario via the Standard Model Higgs boson and LHC. JCAP 0811, 021 (2008)

    Article  ADS  Google Scholar 

  8. Steinwachs, C.F., Kamenshchik, A.Y.: Non-minimal Higgs Inflation and Frame Dependence in Cosmology, arXiv:1301.5543

  9. Martin, J., Ringeval, C., Vennin, V.: Encyclopædia inflationaris. Phys. Dark Univ. 5–6, 75 (2014)

    Article  Google Scholar 

  10. Buttazzo, D., Degrassi, G., Giardino, P.P., Giudice, G.F., Sala, F., Salvio, A., Strumia, A.: Investigating the near-criticality of the Higgs boson. JHEP 12(089), 089 (2013)

    Article  ADS  Google Scholar 

  11. Gorbunov, D.S., Rubakov, V.A.: Introduction to the Theory of the Early Universe: Cosmological Perturbations and Inflationary Theory. World Scientific Publishing, Singapore (2011)

    Book  MATH  Google Scholar 

  12. Aghanim, N., et al.: (Planck Collaboration): Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209v1

  13. Grasso, D., Rubinstein, H.R.: Magnetic fields in the early universe. Phys. Rep. 348, 163 (2001)

    Article  ADS  Google Scholar 

  14. Neronov, A., Vovk, I.: Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars. Science 328, 73 (2010)

    Article  ADS  Google Scholar 

  15. Tavecchio, F., Ghisellini, G., Foschini, L., Bonnoli, G., Ghirlanda, G., Coppi, P.: The intergalactic magnetic field constrained by Fermi/LAT observations of the TeV blazar 1ES 0229+200. Mon. Not. R. Astron. Soc. 406, L70 (2010)

    ADS  Google Scholar 

  16. Taylor, A.M., Vovk, I., Neronov, A.: Extragalactic magnetic fields constraints from simultaneous GeV-TeV observations of blazars. Astron. Astrophys. 529, A144 (2011)

    Article  ADS  Google Scholar 

  17. Caprini, C., Gabici, S.: Gamma-ray observations of blazars and the intergalactic magnetic field spectrum. Phys. Rev. D 91, 123514 (2015)

    Article  ADS  Google Scholar 

  18. Kronberg, P.P.: Extragalactic magnetic fields. Rep. Prog. Phys. 57, 325 (1994)

    Article  ADS  Google Scholar 

  19. Widrow, L.M.: Origin of galactic and extragalactic magnetic fields. Rev. Mod. Phys. 74, 775 (2002)

    Article  ADS  Google Scholar 

  20. Giovannini, M.: The magnetized universe. Int. J. Mod. Phys. D 13, 391 (2004)

    Article  MATH  ADS  Google Scholar 

  21. Kandus, A., Kunze, K.E., Tsagas, C.G.: Primordial magnetogenesis. Phys. Rep. 505, 1 (2011)

    Article  ADS  Google Scholar 

  22. Durrer, R., Neronov, A.: Cosmological magnetic fields: their generation, evolution and observation. Astron. Astrophys. Rev. 21, 62 (2013)

    Article  ADS  Google Scholar 

  23. Ade, P.A.R., et al.: (Planck Collaboration): Planck 2015 results. XIX. Constraints on primordial magnetic fields. Astron. Astrophys. 594, A19 (2016)

  24. Sutton, D.R., Feng, C., Reichardt, C.L.: Current and future constraints on primordial magnetic fields. Astrophys. J. 846, 164 (2017)

    Article  ADS  Google Scholar 

  25. Jedamzik, K., Saveliev, A.: A stringent limit on primordial magnetic fields from the cosmic microwave backround radiation, arXiv:1804.06115 [astro-ph.CO]

  26. Turner, M.S., Widrow, L.M.: Inflation-produced, large-scale magnetic fields. Phys. Rev. D 37, 2743 (1988)

    Article  ADS  Google Scholar 

  27. Ratra, B.: Cosmological ‘seed’ magnetic field from inflation. Astrophys. J. 391, L1 (1992)

    Article  ADS  Google Scholar 

  28. Parker, L.: Particle creation in expanding universes. Phys. Rev. Lett. 21, 562 (1968)

    Article  ADS  Google Scholar 

  29. Garretson, W.D., Field, G.B., Carroll, S.M.: Primordial magnetic fields from pseudo Goldstone bosons. Phys. Rev. D 46, 5346 (1992)

    Article  ADS  Google Scholar 

  30. Dolgov, A.D.: Breaking of conformal invariance and electromagnetic field generation in the universe. Phys. Rev. D 48, 2499 (1993)

    Article  ADS  Google Scholar 

  31. Giovannini, M.: On the variation of the gauge couplings during inflation. Phys. Rev. D 64, 061301 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  32. Bamba, K., Yokoyama, J.: Large scale magnetic fields from inflation in dilaton electromagnetism. Phys. Rev. D 69, 043507 (2004)

    Article  ADS  Google Scholar 

  33. Demozzi, V., Mukhanov, V.M., Rubinstein, H.: Magnetic fields from inflation? J. Cosmol. Astropart. Phys. 08, 025 (2009)

    Article  ADS  Google Scholar 

  34. Kanno, S., Soda, J., Watanabe, M.: Cosmological magnetic fields from inflation and backreaction. J. Cosmol. Astropart. Phys. 12, 009 (2009). https://doi.org/10.1088/1475-7516/2009/12/009

    Article  ADS  Google Scholar 

  35. Ferreira, R.J.Z., Jain, R.K., Sloth, M.S.: Inflationary magnetogenesis without the strong coupling problem. J. Cosmol. Astropart. Phys. 10, 004 (2013). https://doi.org/10.1088/1475-7516/2013/10/004

    Article  ADS  Google Scholar 

  36. Ferreira, R.J.Z., Jain, R.K., Sloth, M.S.: Inflationary magnetogenesis without the strong coupling problem II: Constraints from CMB anisotropies and B-modes. J. Cosmol. Astropart. Phys. 06, 053 (2014). https://doi.org/10.1088/1475-7516/2014/06/053

    Article  ADS  Google Scholar 

  37. Guth, A.: The Inflationary Universe: The Quest for a New Theory of Cosmic Origins (Perseus Books, 1997)

  38. Linde, A.: Particle physics and inflationary cosmology. Contemp. Concepts Phys. 5, 1 (2005)

    Google Scholar 

  39. Mukhanov, V.: Physical Foundations of Cosmology, Cambridge University Press (2005)

  40. Bezrukov, F., Gorbunov, D., Shaposhnikov, M.: On the initial conditions from the hot big bang. JCAP 0906, 029 (2009)

    Article  ADS  Google Scholar 

  41. Garcia-Bellindo, J., Figueroa, D.G., Rubio, J.: Preheating in the Standard Model with the Higgs-Inflaton coupled to gravity. Phys. Rev. D 79, 063531 (2009)

    Article  ADS  Google Scholar 

  42. Bezrukov, F.L., Magnin, A., Shaposhnikov, M.: Standard model Higgs boson mass from inflation. Phys. Lett. B 675, 703 (2009)

    Article  Google Scholar 

  43. de Simone, A., Hertzberg, M.P., Wilczek, F.: Running inflation in the standard model. Phys. Lett. B 678, 1 (2008)

    Article  Google Scholar 

  44. Maeda, K.: ichi: Towards the Einstein-Hilbert action via conformal transformation. Phys. Rev. D 39, 3159 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  45. Barvinsky, A.O., Kamenshchik, A.Y., Kiefer, C., Starobinsky, A.A., Steinwachs, C.: Asymptotic freedom in inflationary cosmology with a non-minimal coupled Higgs field. JCAP 0912, 003 (2009)

    Article  ADS  Google Scholar 

  46. Bezrukov, F., Rubio, J., Shaposhnikov, M.: Living beyond the edge: Higgs inflation and vacuum metastability. Phys. Rev. D 92, 88 (2009)

    Google Scholar 

  47. Barvinsky, A.O., Shaposhnikov, M.: Standard Model Higgs boson mass from inflation: two loop analysis. JHEP 07, 089 (2009)

    ADS  Google Scholar 

  48. Durrer, R., Hollenstein, L., Jain, R.: Can slow roll inflation induce relevant helical magnetic fields. JCAP 03, 037 (2011)

    Article  ADS  Google Scholar 

  49. Sobol, O.O., Gorbar, E.V., Vilchinskii, S.I.: Backreaction of electromagnetic fields and the Schwinger effect in pseudoscalar inflation magnetogenesis. Phys. Rev. D 100, 063523 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  50. Kobayashi, T., Afshordi, N.: Schwinger effect in 4D de Sitter space and constraints on magnetogenesis in the early Universe. J. High Energy Phys. 10, 166 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  51. Fujita, T., Yokoyama, J.: Fermionic Schwinger effect and induced current in de Sitter space. J. Cosmol. Astropart. Phys. 07, 010 (2016)

    MathSciNet  Google Scholar 

  52. Frob, M.B., Gariga, J., Kano, S., Sasaki, M., Soda, J., Tanaka, T., Vilenkin, A.: Schwinger effect in de Sitter space, 26 Jan (2014) arXiv :4137v2 [hep-th]

  53. Stahl, C.: Schwinger effect impacting primordial magnetogenesis. Nucl. Phys. B 939, 95 (2018). https://doi.org/10.1016/j.nuclphysb.2018.12.017

    Article  MATH  ADS  Google Scholar 

  54. Bavarsad, E., Stahl, C., Xue, S.-S.: Scalar current of created pairs by Schwinger mechanism in de Sitter spacetimePhys. Rev. D 94, 104011 (2016). https://doi.org/10.1103/PhysRevD.94.104011

    Article  MathSciNet  Google Scholar 

  55. Stahl, C., Strobel, E., Xue, S.-S.: Fermionic current and Schwinger effect in de Sitter spacetime. Phys. Rev. D 93, 025004 (2016). https://doi.org/10.1103/PhysRevD.93.025004

    Article  MathSciNet  ADS  Google Scholar 

  56. Stahl, C., Xue, S.-S.: Schwinger effect and backreaction in de Sitter spacetime. Phys. Lett. B 760, 288 (2016). https://doi.org/10.1016/j.physletb.2016.07.011

    Article  ADS  Google Scholar 

  57. Hayashinaka, T., Fujita, T., Yokoyama, J.: Fermionic Schwinger effect and induced current in de Sitter space. J. Cosmol. Astropart. Phys. 07, 010 (2016). https://doi.org/10.1088/1475-7516/2016/07/010

    Article  MathSciNet  ADS  Google Scholar 

  58. Hayashinaka, T., Yokoyama, J.: Point splitting renormalization of Schwinger induced current in de Sitter spacetime. J. Cosmol. Astropart. Phys. 07, 012 (2016). https://doi.org/10.1088/1475-7516/2016/07/012

    Article  MathSciNet  ADS  Google Scholar 

  59. Sharma, R., Singh, S.: Multifaceted Schwinger effect in de Sitter space. Phys. Rev. D 96, 025012 (2017). https://doi.org/10.1103/PhysRevD.96.025012

    Article  MathSciNet  ADS  Google Scholar 

  60. Tangarife, W., Tobioka, K., Ubaldi, L., Volansky, T.: Dynamics of relaxed inflation. J. High Energy Phys. 02, 084 (2018). https://doi.org/10.1007/JHEP02(2018)084

    Article  MATH  ADS  Google Scholar 

  61. Bavarsad, E., Kim, S.P., Stahl, C., Xue, S.-S.: Effect of a magnetic field on Schwinger mechanism in de Sitter spacetime. Phys. Rev. D 97, 025017 (2018). https://doi.org/10.1103/PhysRevD.97.025017

    Article  MathSciNet  ADS  Google Scholar 

  62. Hayashinaka, T., Xue, S.-S.: Physical renormalization condition for de Sitter QED. Phys. Rev. D 97, 105010 (2018). https://doi.org/10.1103/PhysRevD.97.105010

    Article  ADS  Google Scholar 

  63. Hayashinaka, T.: Analytical Investigation into Electromagnetic Response of Quantum Fields in de Sitter Spacetime, Ph.D. thesis, University of Tokyo, (2018)

  64. Geng, J.-J., Li, B.-F., Soda, J., Wang, A., Wu, Q., Zhu, T.: Schwinger pair production by electric field coupled to inflaton. J. Cosmol. Astropart. Phys. 02, 018 (2018). https://doi.org/10.1088/1475-7516/2018/02/018

    Article  MATH  ADS  Google Scholar 

  65. Giovannini, M.: Spectator electric fields, de Sitter spacetime, and the Schwinger effect. Phys. Rev. D 97, 061301(R) (2018). https://doi.org/10.1103/PhysRevD.97.061301

    Article  ADS  Google Scholar 

  66. Kitamoto, H.: Schwinger effect in inflaton-driven electric field. Phys. Rev. D 98, 103512 (2018). https://doi.org/10.1103/PhysRevD.98.103512

    Article  MathSciNet  ADS  Google Scholar 

  67. Schwinger, J.: On gauge invariance and vacuum polarization. Phys. Rev. 82, 664 (1951). https://doi.org/10.1103/PhysRev.82.664

    Article  MathSciNet  MATH  ADS  Google Scholar 

  68. Sharma, R., Jagannathan, S., Seshadri, T.R., Subramanian, K.: Challenges in inflationary magnetogenesis: constraints from strong coupling, backreaction, and the Schwinger effect. Phys. Rev. D 96, 083511 (2017). https://doi.org/10.1103/PhysRevD.96.083511

    Article  ADS  Google Scholar 

  69. Sobol, O.O., Gorbar, E.V., Kamarpour, M., Vilchinskii, S.I.: Influence of backreaction of electric fields and Schwinger effect on inflationary magnetogenesis. Phys. Rev. D 98, 063534 (2018). https://doi.org/10.1103/PhysRevD.98.063534

    Article  MathSciNet  ADS  Google Scholar 

  70. Fröb, M.B., Garriga, J., Kanno, S., Sasaki, M., Soda, J., Tanaka, T., Vilenkin, A.: Schwinger effect in de Sitter space. J. Cosmol. Astropart. Phys. 04, 009 (2014). https://doi.org/10.1088/1475-7516/2014/04/009

    Article  MathSciNet  ADS  Google Scholar 

  71. Banyeres, M., Domènech, G., Garriga, J.: Vacuum birefringence and the Schwinger effect in (3+1) de Sitter. J. Cosmol. Astropart. Phys. 10, 023 (2018). [arXiv:1809.08977 [hep-th]]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  72. Kamarpour, M.: Magnetogenesis in Higgs inflation model. General Relat. Gravit. (2021). https://doi.org/10.1007/s10714-021-02824-0

    Article  MathSciNet  MATH  Google Scholar 

  73. Kamarpour, M.: Magnetogenessis by non-minimal coupling to gravity in Higgs inflation model. Ann. Phys. 428, 168459 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  74. Gorbar, E.V., Schmitz, K., Sobol, O.O., Vilchinskii, S.I.: Gauge-field production during axion inflation in the gradient expansion formalism, Phys. Rev. D 104(12), 123504 (2021) [arXiv:2109.01651v2 [hep-ph]] 2 Dec 2021

  75. Sobol, O.O., Gorbar, E.V., Teslyk, O.M., Vilchinskii, S.I.: Generation of electromagnetic field nonminimally coupled to gravity during the Higgs inflation. Phys. Rev. D 104, 043509 (2021). arXiv:20141.4400v1 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  76. Starobinsky, A.A.: A new type of isotropic cosmological models without singularity. Phys. Lett. B 91 (1980)

  77. Spokoiny, B.L.: Inflation and generation of perturbations in broken-symmetric theory of gravity. Phys. Lett. B 147, 39 (1984)

    Article  ADS  Google Scholar 

  78. Anber, M.M., Sorbo, L.: Naturally inflating on steep potentials through electromagnetic dissipation. Phys. Rev. D (2010). https://doi.org/10.1103/PhysRevD.81.043534

    Article  Google Scholar 

  79. Ballardini, M., Braglia, M., Finelli, F., Marozzi, G., Starobinsky, A.A.: Energy-momentum tensor and helicity for gauge fields coupled to a pseudo-scalar inflaton. Phys. Rev. D 100 (2019) arXiv:1910.13448

Download references

Acknowledgements

The author is thankful to S. Vilchinskii, E.V. Gorbar, and O. Sobol for critical comments and useful discussions during the preparation of manuscript. The author is also thankful to O.Sobol for his assistance in plotting figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran Kamarpour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: there was a typo in the article title.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamarpour, M. Influence of the Schwinger effect on radiatively corrected Higgs inflationary magnetogenesis. Gen Relativ Gravit 54, 32 (2022). https://doi.org/10.1007/s10714-022-02920-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-02920-9

Keywords

Navigation