Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dynamical memristors for higher-complexity neuromorphic computing

Abstract

Research on electronic devices and materials is currently driven by both the slowing down of transistor scaling and the exponential growth of computing needs, which make present digital computing increasingly capacity-limited and power-limited. A promising alternative approach consists in performing computing based on intrinsic device dynamics, such that each device functionally replaces elaborate digital circuits, leading to adaptive ‘complex computing’. Memristors are a class of devices that naturally embody higher-order dynamics through their internal electrophysical processes. In this Review, we discuss how novel material properties enable complex dynamics and define different orders of complexity in memristor devices and systems. These native complex dynamics at the device level enable new computing architectures, such as brain-inspired neuromorphic systems, which offer both high energy efficiency and high computing capacity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biological and computational adaptation and complexity.
Fig. 2: Concept of memristor and memristive behaviours of various complexity.
Fig. 3: Examples of memristors of different orders of complexity.
Fig. 4: Emulation of higher-order complexity using multiple circuit elements.
Fig. 5: Computing with memristors of different orders of complexity.
Fig. 6: Computing based on spatio-temporal complexity of memristors.
Fig. 7: Accessing non-equilibrium phases.
Fig. 8: Comparison between the future requirements and potential of the main computing technologies.

Similar content being viewed by others

References

  1. Moore, G. E. Cramming more components onto integrated circuits. Electronics 38, 114–117 (1965).

    Google Scholar 

  2. Kendall, J. D. & Kumar, S. The building blocks of a brain-inspired computer. Appl. Phys. Rev. 7, 011305 (2020).

    Article  CAS  Google Scholar 

  3. Theis, T. N. & Wong, H.-S. P. The end of Moore’s law: A new beginning for information technology. Comput. Sci. Eng. 19, 41–50 (2017).

    Article  Google Scholar 

  4. Alexander, F. et al. Exascale applications: skin in the game. Philos. Trans. R. Soc. A 378, 20190056 (2020).

    Article  Google Scholar 

  5. Messina, P. The exascale computing project. Comput. Sci. Eng. 19, 63–67 (2017).

    Article  Google Scholar 

  6. Leiserson, C. E. et al. There’s plenty of room at the top: What will drive computer performance after Moore’s law? Science 368, eaam9744 (2020).

    Article  CAS  Google Scholar 

  7. Lee, C. T. & Amaro, R. E. Exascale computing: A new dawn for computational biology. Comput. Sci. Eng. 20, 18–25 (2018).

    Article  Google Scholar 

  8. Schmidt, B. & Hildebrandt, A. Next-generation sequencing: big data meets high performance computing. Drug Discov. Today 22, 712–717 (2017).

    Article  CAS  Google Scholar 

  9. Wong, H.-S. P. et al. A density metric for semiconductor technology. Proc. IEEE 108, 478–482 (2020).

    Article  Google Scholar 

  10. Williams, R. S. What’s next? The end of Moore’s law. Comput. Sci. Eng. 19, 7–13 (2017).

    Article  Google Scholar 

  11. Chen, A. et al. A survey on architecture advances enabled by emerging beyond-CMOS technologies. IEEE Des. Test 36, 46–68 (2019).

    Article  Google Scholar 

  12. Dragoman, M. & Dragoman, D. Atomic-Scale Electronics Beyond CMOS (Springer, 2021).

  13. Upadhyay, N. K. et al. Emerging memory devices for neuromorphic computing. Adv. Mater. Technol. 4, 1800589 (2019).

    Article  CAS  Google Scholar 

  14. Hebb, D. O. The Organization of Behavior: A Neuropsychological Theory (Wiley, 1949).

  15. Rosenblatt, F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 386 (1958).

    Article  CAS  Google Scholar 

  16. Ivakhnenko, A. G. & Lapa, V. G. Cybernetics and Forecasting Techniques Vol. 8 (American Elsevier, 1967).

  17. Werbos, P. J. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences (Harvard Univ., 1975).

  18. Kelley, H. J. Gradient theory of optimal flight paths. ARS J. 30, 947–954 (1960).

    Article  Google Scholar 

  19. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).

    Article  Google Scholar 

  20. Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

    Article  CAS  Google Scholar 

  21. Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 43, 59–69 (1982).

    Article  Google Scholar 

  22. Manipatruni, S., Nikonov, D. E. & Young, I. A. Beyond CMOS computing with spin and polarization. Nat. Phys. 14, 338–343 (2018).

    Article  CAS  Google Scholar 

  23. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).

    Article  Google Scholar 

  24. Solli, D. R. & Jalali, B. Analog optical computing. Nat. Photonics 9, 704–706 (2015).

    Article  CAS  Google Scholar 

  25. Paun, G., Rozenberg, G. & Salomaa, A. DNA Computing: New Computing Paradigms (Springer, 2005).

  26. Mead, C. Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636 (1990).

    Article  Google Scholar 

  27. Kephart, J. O. & Chess, D. M. The vision of autonomic computing. Computer 36, 41–50 (2003).

    Article  Google Scholar 

  28. Kish, L. B. Thermal noise driven computing. Appl. Phys. Lett. 89, 144104 (2006).

    Article  CAS  Google Scholar 

  29. Unger, R. & Moult, J. Towards computing with proteins. Proteins 63, 53–64 (2006).

    Article  CAS  Google Scholar 

  30. Herculano-Houzel, S. The Human Advantage: A New Understanding of How Our Brain Became Remarkable (MIT Press, 2016).

  31. Mead, C. How we created neuromorphic engineering. Nat. Electron. 3, 434–435 (2020).

    Article  Google Scholar 

  32. James, C. D. et al. A historical survey of algorithms and hardware architectures for neural-inspired and neuromorphic computing applications. Biol. Inspired Cogn. Archit. 19, 49–64 (2017).

    Google Scholar 

  33. McCulloch, W. S. & Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943).

    Article  Google Scholar 

  34. Pitts, W. Some observations on the simple neuron circuit. Bull. Math. Biophys. 4, 121–129 (1942).

    Article  Google Scholar 

  35. Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952).

    Article  CAS  Google Scholar 

  36. FitzHugh, R. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961).

    Article  CAS  Google Scholar 

  37. Nagumo, J., Arimoto, S. & Yoshizawa, S. An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070 (1962).

    Article  Google Scholar 

  38. Dayhoff, J. E. Neural Network Architectures: An Introduction (Van Nostrand Reinhold, 1990).

  39. Bengio, Y. in Proceedings of ICML Workshop on Unsupervised and Transfer Learning (eds Guyon, I., Dror, G., Lemire, V., Taylor, G. & Silver, D.) 17–36 (PMLR, 2012).

  40. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 61, 85–117 (2015).

    Article  Google Scholar 

  41. Izhikevich, E. M. Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15, 1063–1070 (2004).

    Article  Google Scholar 

  42. Turing, A. M. in The Turing Test: Verbal Behavior as the Hallmark of Intelligence (ed. Shieber, S. M.) 110–127 (MIT Press, 1964).

  43. Gell-Mann, M. in Complexity and Industrial Clusters (eds Curzio, Q. & Fortis, M.) 13–24 (Springer, 2002).

  44. Adami, C. What is complexity? BioEssays 24, 1085–1094 (2002).

    Article  Google Scholar 

  45. Chua, L. O. CNN: A vision of complexity. Int. J. Bifurc. Chaos 7, 2219–2425 (1997).

    Article  Google Scholar 

  46. Chua, L. O. Local activity is the origin of complexity. Int. J. Bifurc. Chaos 15, 3435–3456 (2005).

    Article  Google Scholar 

  47. Kumar, S., Williams, R. S. & Wang, Z. Third-order nanocircuit elements for neuromorphic engineering. Nature 585, 518–523 (2020).

    Article  CAS  Google Scholar 

  48. Csete, M. E. & Doyle, J. C. Reverse engineering of biological complexity. Science 295, 1664–1669 (2002).

    Article  CAS  Google Scholar 

  49. Solé, R. & Goodwin, B. Signs of Life: How Complexity Pervades Biology (Basic Books, 2000).

  50. Bonchev, D. D. & Rouvray, D. Complexity in Chemistry, Biology, and Ecology (Springer, 2007).

  51. Whitesides, G. M. & Ismagilov, R. F. Complexity in chemistry. Science 284, 89–92 (1999).

    Article  CAS  Google Scholar 

  52. Stanley, H. et al. Self-organized complexity in economics and finance. Proc. Natl Acad. Sci. USA 99, 2561–2565 (2002).

    Article  Google Scholar 

  53. Arthur, W. B. Foundations of complexity economics. Nat. Rev. Phys. 3, 136–145 (2021).

    Article  Google Scholar 

  54. Hannerz, U. Cultural Complexity: Studies in the Social Organization of Meaning (Columbia Univ. Press, 1992).

  55. Freeberg, T. M., Dunbar, R. I. & Ord, T. J. Social complexity as a proximate and ultimate factor in communicative complexity. Philos. Trans. R. Soc. B Biol. Sci. 367, 1785–1801 (2012).

    Article  Google Scholar 

  56. Magee, J. C. & Grienberger, C. Synaptic plasticity forms and functions. Annu. Rev. Neurosci. 43, 95–117 (2020).

    Article  CAS  Google Scholar 

  57. Eccles, J. C. The Physiology of Synapses (Academic Press, 2013).

  58. Fain, G. L. Molecular and Cellular Physiology of Neurons (Harvard Univ. Press, 1999).

  59. Hopfield, J. J. Neurons, dynamics and computation. Phys. Today 47, 40–47 (1994).

    Article  Google Scholar 

  60. Mainzer, K. & Chua, L. Local Activity Principle: The Cause of Complexity and Symmetry Breaking (World Scientific, 2013).

  61. Chua, L. O. & Lin, T. Chaos and fractals from third-order digital filters. Int. J. Circuit Theory Appl. 18, 241–255 (1990).

    Article  Google Scholar 

  62. Barrio, R., Martínez, M. A., Serrano, S. & Wilczak, D. When chaos meets hyperchaos: 4D Rössler model. Phys. Lett. A 379, 2300–2305 (2015).

    Article  CAS  Google Scholar 

  63. Koch, C. & Poggio, T. in Single Neuron Computation (eds McKenna, T., Davis, J. & Zornetzer, S. F.) 315–345 (Elsevier, 1992).

  64. Izhikevich, E. M. Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 1569–1572 (2003).

    Article  CAS  Google Scholar 

  65. Wilson, H. R. Voluntary generation of hyperchaotic visuo-motor patterns. Sci. Rep. 9, 13819 (2019).

    Article  CAS  Google Scholar 

  66. Nawrocki, R. A., Voyles, R. M. & Shaheen, S. E. A mini review of neuromorphic architectures and implementations. IEEE Trans. Electron Devices 63, 3819–3829 (2016).

    Article  CAS  Google Scholar 

  67. He, Y. et al. Recent progress on emerging transistor-based neuromorphic devices. Adv. Intell. Syst. 3, 2000210 (2021).

    Article  Google Scholar 

  68. Chua, L. Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971).

    Article  Google Scholar 

  69. Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

    Article  CAS  Google Scholar 

  70. Pickett, M. D., Medeiros-Ribeiro, G. & Williams, R. S. A scalable neuristor built with Mott memristors. Nat. Mater. 12, 114–117 (2013).

    Article  CAS  Google Scholar 

  71. Zhu, M., Ren, K. & Song, Z. Ovonic threshold switching selectors for three-dimensional stackable phase-change memory. MRS Bull. 44, 715–720 (2019).

    Article  CAS  Google Scholar 

  72. Wang, Z. et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 (2017).

    Article  CAS  Google Scholar 

  73. Kumar, S. et al. Direct observation of localized radial oxygen migration in functioning tantalum oxide memristors. Adv. Mater. 28, 2772–2776 (2016).

    Article  CAS  Google Scholar 

  74. Pershin, Y. V. & Di Ventra, M. Spin memristive systems: Spin memory effects in semiconductor spintronics. Phys. Rev. B 78, 113309 (2008).

    Article  CAS  Google Scholar 

  75. Endoh, T., Koike, H., Ikeda, S., Hanyu, T. & Ohno, H. An overview of nonvolatile emerging memories — spintronics for working memories. IEEE J. Emerg. Sel. Topics Circuits Syst. 6, 109–119 (2016).

    Article  Google Scholar 

  76. Meena, J. S., Sze, S. M., Chand, U. & Tseng, T.-Y. Overview of emerging nonvolatile memory technologies. Nanoscale Res. Lett. 9, 526 (2014).

    Article  Google Scholar 

  77. Raoux, S., Xiong, F., Wuttig, M. & Pop, E. Phase change materials and phase change memory. MRS Bull. 39, 703–710 (2014).

    Article  Google Scholar 

  78. Choi, S., Yang, J. & Wang, G. Emerging memristive artificial synapses and neurons for energy-efficient neuromorphic computing. Adv. Mater. 32, 2004659 (2020).

    Article  CAS  Google Scholar 

  79. Guo, R., Lin, W., Yan, X., Venkatesan, T. & Chen, J. Ferroic tunnel junctions and their application in neuromorphic networks. Appl. Phys. Rev. 7, 011304 (2020).

    Article  CAS  Google Scholar 

  80. Li, Y., Wang, Z., Midya, R., Xia, Q. & Yang, J. J. Review of memristor devices in neuromorphic computing: materials sciences and device challenges. J. Phys. D Appl. Phys. 51, 503002 (2018).

    Article  CAS  Google Scholar 

  81. Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018).

    Article  Google Scholar 

  82. Sun, K., Chen, J. & Yan, X. The future of memristors: materials engineering and neural networks. Adv. Funct. Mater. 31, 2006773 (2021).

    Article  CAS  Google Scholar 

  83. Xu, W., Wang, J. & Yan, X. Advances in memristor-based neural networks. Front. Nanotechnol. 3, 645995 (2021).

    Article  Google Scholar 

  84. Kim, M.-K., Park, Y., Kim, I.-J. & Lee, J.-S. Emerging materials for neuromorphic devices and systems. Iscience 23, 101846 (2020).

    Article  CAS  Google Scholar 

  85. Wang, C.-Y. et al. 2D layered materials for memristive and neuromorphic applications. Adv. Electron. Mater. 6, 1901107 (2020).

    Article  CAS  Google Scholar 

  86. Krestinskaya, O., James, A. P. & Chua, L. O. Neuromemristive circuits for edge computing: A review. IEEE Trans. Neural Netw. Learn. Syst. 31, 4–23 (2019).

    Article  Google Scholar 

  87. Goi, E., Zhang, Q., Chen, X., Luan, H. & Gu, M. Perspective on photonic memristive neuromorphic computing. PhotoniX 1, 3 (2020).

    Article  Google Scholar 

  88. Mao, J.-Y., Zhou, L., Zhu, X., Zhou, Y. & Han, S.-T. Photonic memristor for future computing: a perspective. Adv. Opt. Mater. 7, 1900766 (2019).

    Article  CAS  Google Scholar 

  89. Sangwan, V. K. & Hersam, M. C. Neuromorphic nanoelectronic materials. Nat. Nanotechnol. 15, 517–528 (2020).

    Article  CAS  Google Scholar 

  90. Sokolov, A. S., Abbas, H., Abbas, Y. & Choi, C. Towards engineering in memristors for emerging memory and neuromorphic computing: a review. J. Semicond. 42, 013101 (2021).

    Article  Google Scholar 

  91. Islam, R. et al. Device and materials requirements for neuromorphic computing. J. Phys. D Appl. Phys. 52, 113001 (2019).

    Article  CAS  Google Scholar 

  92. Jeong, D. S. & Hwang, C. S. Nonvolatile memory materials for neuromorphic intelligent machines. Adv. Mater. 30, 1704729 (2018).

    Article  CAS  Google Scholar 

  93. del Valle, J., Ramírez, J. G., Rozenberg, M. J. & Schuller, I. K. Challenges in materials and devices for resistive-switching-based neuromorphic computing. J. Appl. Phys. 124, 211101 (2018).

    Article  CAS  Google Scholar 

  94. Burr, G. W., Sebastian, A., Vianello, E., Waser, R. & Parkin, S. Emerging materials in neuromorphic computing: Guest editorial. APL Mater. 8, 010401 (2020).

    Article  CAS  Google Scholar 

  95. Wang, Z. et al. Resistive switching materials for information processing. Nat. Rev. Mater. 5, 173–195 (2020).

    Article  CAS  Google Scholar 

  96. Zhang, W. et al. Neuro-inspired computing chips. Nat. Electron. 3, 371–382 (2020).

    Article  Google Scholar 

  97. Mehonic, A. et al. Memristors — from in-memory computing, deep learning acceleration, and spiking neural networks to the future of neuromorphic and bio-inspired computing. Adv. Intell. Syst. 2, 2000085 (2020).

    Article  Google Scholar 

  98. Sung, C., Hwang, H. & Yoo, I. K. Perspective: A review on memristive hardware for neuromorphic computation. J. Appl. Phys. 124, 151903 (2018).

    Article  CAS  Google Scholar 

  99. Wang, H. & Yan, X. Overview of resistive random access memory (RRAM): materials, filament mechanisms, performance optimization, and prospects. Phys. Status Solidi Rapid Res. Lett. 13, 1900073 (2019).

    Article  CAS  Google Scholar 

  100. Hong, X. et al. Oxide-based RRAM materials for neuromorphic computing. J. Mater. Sci. 53, 8720–8746 (2018).

    Article  CAS  Google Scholar 

  101. Moon, K. et al. RRAM-based synapse devices for neuromorphic systems. Faraday Discuss. 213, 421–451 (2019).

    Article  CAS  Google Scholar 

  102. Chen, Y. ReRAM: History, status, and future. IEEE Trans. Electron Devices 67, 1420–1433 (2020).

    Article  CAS  Google Scholar 

  103. Shen, Z. et al. Advances of RRAM devices: Resistive switching mechanisms, materials and bionic synaptic application. Nanomaterials 10, 1437 (2020).

    Article  CAS  Google Scholar 

  104. Banerjee, W. Challenges and applications of emerging nonvolatile memory devices. Electronics 9, 1029 (2020).

    Article  CAS  Google Scholar 

  105. Rehman, M. M. et al. Decade of 2D-materials-based RRAM devices: a review. Sci. Technol. Adv. Mater. 21, 147–186 (2020).

    Article  CAS  Google Scholar 

  106. Feng, X., Liu, X. & Ang, K.-W. 2D photonic memristor beyond graphene: progress and prospects. Nanophotonics 9, 1579–1599 (2020).

    Article  CAS  Google Scholar 

  107. Wang, Y. et al. Mott-transition-based RRAM. Mater. Today 28, 63–80 (2019).

    Article  Google Scholar 

  108. Goswami, S., Goswami, S. & Venkatesan, T. An organic approach to low energy memory and brain inspired electronics. Appl. Phys. Rev. 7, 021303 (2020).

    Article  CAS  Google Scholar 

  109. van De Burgt, Y., Melianas, A., Keene, S. T., Malliaras, G. & Salleo, A. Organic electronics for neuromorphic computing. Nat. Electron. 1, 386–397 (2018).

    Article  Google Scholar 

  110. Ahn, E. C., Wong, H.-S. P. & Pop, E. Carbon nanomaterials for non-volatile memories. Nat. Rev. Mater. 3, 18009 (2018).

    Article  CAS  Google Scholar 

  111. Kim, S. et al. Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity. Nano Lett. 15, 2203–2211 (2015).

    Article  CAS  Google Scholar 

  112. Rodriguez-Fernandez, A., Cagli, C., Perniola, L., Miranda, E. & Suñé, J. Characterization of HfO2-based devices with indication of second order memristor effects. Microelectron. Eng. 195, 101–106 (2018).

    Article  CAS  Google Scholar 

  113. Mikheev, V. et al. Ferroelectric second-order memristor. ACS Appl. Mater. Interfaces 11, 32108–32114 (2019).

    Article  CAS  Google Scholar 

  114. Slesazeck, S. & Mikolajick, T. Nanoscale resistive switching memory devices: a review. Nanotechnology 30, 352003 (2019).

    Article  CAS  Google Scholar 

  115. Chen, A. A review of emerging non-volatile memory (NVM) technologies and applications. Solid State Electron. 125, 25–38 (2016).

    Article  CAS  Google Scholar 

  116. Alexandrov, A. et al. Current-controlled negative differential resistance due to Joule heating in TiO2. Appl. Phys. Lett. 99, 202104 (2011).

    Article  CAS  Google Scholar 

  117. Pickett, M. D., Borghetti, J., Yang, J. J., Medeiros-Ribeiro, G. & Williams, R. S. Coexistence of memristance and negative differential resistance in a nanoscale metal-oxide-metal system. Adv. Mater. 23, 1730–1733 (2011).

    Article  CAS  Google Scholar 

  118. Narayanan, V., Li, J.-S. & Ching, S. Biophysically interpretable inference of single neuron dynamics. J. Comput. Neurosci. 47, 61–76 (2019).

    Article  Google Scholar 

  119. Kumar, S., Strachan, J. P. & Williams, R. S. Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing. Nature 548, 318–321 (2017).

    Article  CAS  Google Scholar 

  120. Yi, W. et al. Biological plausibility and stochasticity in scalable VO2 active memristor neurons. Nat. Commun. 9, 4661 (2018).

    Article  CAS  Google Scholar 

  121. Fitch, A. L., Yu, D., Iu, H. H. & Sreeram, V. Hyperchaos in a memristor-based modified canonical Chua’s circuit. Int. J. Bifurc. Chaos 22, 1250133 (2012).

    Article  Google Scholar 

  122. Ercsey-Ravasz, M. & Toroczkai, Z. Optimization hardness as transient chaos in an analog approach to constraint satisfaction. Nat. Phys. 7, 966–970 (2011).

    Article  CAS  Google Scholar 

  123. Yu, W. et al. Design of a new seven-dimensional hyperchaotic circuit and its application in secure communication. IEEE Access. 7, 125586–125608 (2019).

    Article  Google Scholar 

  124. An, X., Jiang, M., Deng, W. & Fang, J. A novel dual memristor hyperchaotic system and its application for secure communication based on three-fold function projection synchronization. Int. J. Numer. Model. Electron. Netw. Devices Fields 34, e2825 (2021).

    Article  Google Scholar 

  125. Wang, Z., Min, F. & Wang, E. A new hyperchaotic circuit with two memristors and its application in image encryption. AIP Adv. 6, 095316 (2016).

    Article  Google Scholar 

  126. Wang, L., Dong, T. & Ge, M.-F. Finite-time synchronization of memristor chaotic systems and its application in image encryption. Appl. Math. Comput. 347, 293–305 (2019).

    Google Scholar 

  127. Ruan, J., Sun, K., Mou, J., He, S. & Zhang, L. Fractional-order simplest memristor-based chaotic circuit with new derivative. Eur. Phys. J. 133, 3 (2018).

    Google Scholar 

  128. Zhu, J. L., Dong, J. & Gao, H. Q. Nine-dimensional eight-order chaotic system and its circuit implementation. Appl. Mech. Mater. 716, 1346–1351 (2015).

    Google Scholar 

  129. Zhang, Y. et al. Brain-inspired computing with memristors: Challenges in devices, circuits, and systems. Appl. Phys. Rev. 7, 011308 (2020).

    Article  CAS  Google Scholar 

  130. Caravelli, F. & Carbajal, J. P. Memristors for the curious outsiders. Technologies 6, 118 (2018).

    Article  Google Scholar 

  131. Chu, M. et al. Neuromorphic hardware system for visual pattern recognition with memristor array and CMOS neuron. IEEE Trans. Ind. Electron. 62, 2410–2419 (2014).

    Article  Google Scholar 

  132. Zidan, M. A. et al. A general memristor-based partial differential equation solver. Nat. Electron. 1, 411–420 (2018).

    Article  Google Scholar 

  133. Wang, Z. et al. In situ training of feed-forward and recurrent convolutional memristor networks. Nat. Mach. Intell. 1, 434–442 (2019).

    Article  Google Scholar 

  134. Wang, Z. et al. Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 1, 137–145 (2018).

    Article  Google Scholar 

  135. Sebastian, A. et al. Temporal correlation detection using computational phase-change memory. Nat. Commun. 8, 1115 (2017).

    Article  CAS  Google Scholar 

  136. Lu, Y. et al. In-memory realization of eligibility traces based on conductance drift of phase change memory for energy-efficient reinforcement learning. Adv. Mater. 34, 2107811 (2021).

    Article  CAS  Google Scholar 

  137. Zidan, M. A., Jeong, Y. & Lu, W. D. Temporal learning using second-order memristors. IEEE Trans. Nanotechnol. 16, 721–723 (2017).

    Article  CAS  Google Scholar 

  138. Cai, F. et al. Power-efficient combinatorial optimization using intrinsic noise in memristor Hopfield neural networks. Nat. Electron. 3, 409–418 (2020).

    Article  Google Scholar 

  139. Diaz-Alvarez, A., Higuchi, R., Li, Q., Shingaya, Y. & Nakayama, T. Associative routing through neuromorphic nanowire networks. AIP Adv. 10, 025134 (2020).

    Article  Google Scholar 

  140. Sillin, H. O. et al. A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing. Nanotechnology 24, 384004 (2013).

    Article  CAS  Google Scholar 

  141. Diaz-Alvarez, A. et al. Emergent dynamics of neuromorphic nanowire networks. Sci. Rep. 9, 14920 (2019).

    Article  CAS  Google Scholar 

  142. Fu, K. et al. in 2020 International Joint Conference on Neural Networks (IJCNN) 1–8 (IEEE, 2020).

  143. Kuncic, Z. et al. in 2020 IEEE International Symposium on Circuits and Systems (ISCAS) 1–5 (IEEE, 2020).

  144. Zhu, R. et al. in 2020 International Conference on Rebooting Computing (ICRC) 102–106 (IEEE, 2020).

  145. Demis, E. C. et al. Atomic switch networks — nanoarchitectonic design of a complex system for natural computing. Nanotechnology 26, 204003 (2015).

    Article  CAS  Google Scholar 

  146. Lilak, S. et al. Spoken digit classification by in-materio reservoir computing with neuromorphic atomic switch networks. Front. Nanotechnol. 3, 38 (2021).

    Article  Google Scholar 

  147. Avizienis, A. V. et al. Neuromorphic atomic switch networks. PLoS ONE 7, e42772 (2012).

    Article  CAS  Google Scholar 

  148. Tanaka, G. et al. Recent advances in physical reservoir computing: A review. Neural Netw. 115, 100–123 (2019).

    Article  Google Scholar 

  149. Kuncic, Z. & Nakayama, T. Neuromorphic nanowire networks: principles, progress and future prospects for neuro-inspired information processing. Adv. Phys. X 6, 1894234 (2021).

    Google Scholar 

  150. Pantone, R. D., Kendall, J. D. & Nino, J. C. Memristive nanowires exhibit small-world connectivity. Neural Netw. 106, 144–151 (2018).

    Article  Google Scholar 

  151. Du, C. et al. Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 8, 2204 (2017).

    Article  CAS  Google Scholar 

  152. Moon, J. et al. Temporal data classification and forecasting using a memristor-based reservoir computing system. Nat. Electron. 2, 480–487 (2019).

    Article  Google Scholar 

  153. Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428–431 (2017).

    Article  CAS  Google Scholar 

  154. Zhu, X., Li, D., Liang, X. & Lu, W. D. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 18, 141–148 (2019).

    Article  CAS  Google Scholar 

  155. Yang, Y., Chen, B. & Lu, W. D. Memristive physically evolving networks enabling the emulation of heterosynaptic plasticity. Adv. Mater. 27, 7720–7727 (2015).

    Article  CAS  Google Scholar 

  156. Csaba, G. & Porod, W. Coupled oscillators for computing: A review and perspective. Appl. Phys. Rev. 7, 011302 (2020).

    Article  CAS  Google Scholar 

  157. Velichko, A., Belyaev, M., Putrolaynen, V., Perminov, V. & Pergament, A. Thermal coupling and effect of subharmonic synchronization in a system of two VO2 based oscillators. Solid State Electron. 141, 40–49 (2018).

    Article  CAS  Google Scholar 

  158. Brown, K. R. et al. Coupled quantized mechanical oscillators. Nature 471, 196–199 (2011).

    Article  CAS  Google Scholar 

  159. Koppenhöfer, M., Bruder, C. & Roulet, A. Quantum synchronization on the IBM Q system. Phys. Rev. Res. 2, 023026 (2020).

    Article  Google Scholar 

  160. Sood, A. et al. Universal phase dynamics in VO2 switches revealed by ultrafast operando diffraction. Science 373, 352–355 (2021).

    Article  CAS  Google Scholar 

  161. Laverock, J. et al. Direct observation of decoupled structural and electronic transitions and an ambient pressure monocliniclike metallic phase of VO2. Phys. Rev. Lett. 113, 216402 (2014).

    Article  CAS  Google Scholar 

  162. Kumar, S. et al. Sequential electronic and structural transitions in VO2 observed using X-ray absorption spectromicroscopy. Adv. Mater. 26, 7505–7509 (2014).

    Article  CAS  Google Scholar 

  163. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Adv. Mater. 32, 2003984 (2020).

    Article  CAS  Google Scholar 

  164. Fuller, E. J. et al. Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science 364, 570–574 (2019).

    Article  CAS  Google Scholar 

  165. Zhu, J. et al. Ion gated synaptic transistors based on 2D van der Waals crystals with tunable diffusive dynamics. Adv. Mater. 30, 1800195 (2018).

    Article  CAS  Google Scholar 

  166. Kumar, S. & Williams, R. S. Separation of current density and electric field domains caused by nonlinear electronic instabilities. Nat. Commun. 9, 2030 (2018).

    Article  CAS  Google Scholar 

  167. Goodwill, J. M. et al. Spontaneous current constriction in threshold switching devices. Nat. Commun. 10, 1628 (2019).

    Article  CAS  Google Scholar 

  168. Íñiguez, J., Zubko, P., Luk’yanchuk, I. & Cano, A. Ferroelectric negative capacitance. Nat. Rev. Mater. 4, 243–256 (2019).

    Article  Google Scholar 

  169. Islam Khan, A. et al. Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures. Appl. Phys. Lett. 99, 113501 (2011).

    Article  CAS  Google Scholar 

  170. Kumar, S. & Williams, R. S. Tutorial: experimental nonlinear dynamical circuit analysis of a ferromagnetic inductor. IEEE Circuits Syst. Mag. 18, 28–34 (2018).

    Article  Google Scholar 

  171. Chen, L. et al. Enhancement of thermal conductivity across the metal-insulator transition in vanadium dioxide. Appl. Phys. Lett. 113, 061902 (2018).

    Article  CAS  Google Scholar 

  172. Kumar, S. et al. Physical origins of current and temperature controlled negative differential resistances in NbO2. Nat. Commun. 8, 658 (2017).

    Article  CAS  Google Scholar 

  173. von Wangenheim, L. On the Barkhausen and Nyquist stability criteria. Analog Integr. Circuits Signal. Process. 66, 139–141 (2011).

    Article  Google Scholar 

  174. Chua, L. O. & Yang, L. Cellular neural networks: Theory. IEEE Trans. Circuits Syst. 35, 1257–1272 (1988).

    Article  Google Scholar 

  175. Vikhar, P. A. in 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC) 261–265 (IEEE, 2016).

  176. Strachan, J. P. Fast Ising solvers based on oscillator networks. Nat. Electron. 4, 458–459 (2021).

    Article  Google Scholar 

  177. Shulaker, M. M. et al. Carbon nanotube computer. Nature 501, 526–530 (2013).

    Article  CAS  Google Scholar 

  178. Kogge, P. et al. ExaScale Computing Study: Technology Challenges in Achieving Exascale Systems (DARPA IPTO, 2008).

  179. Freedman, M. H. P/NP, and the quantum field computer. Proc. Natl Acad. Sci. USA 95, 98–101 (1998).

    Article  CAS  Google Scholar 

  180. Bennett, C. H., Bernstein, E., Brassard, G. & Vazirani, U. Strengths and weaknesses of quantum computing. SIAM J. Comput. 26, 1510–1523 (1997).

    Article  Google Scholar 

  181. Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41, 303–332 (1999).

    Article  Google Scholar 

  182. Feynman, R. P. in Feynman and Computation 133–153 (CRC Press, 2018).

  183. Childs, A. M., Maslov, D., Nam, Y., Ross, N. J. & Su, Y. Toward the first quantum simulation with quantum speedup. Proc. Natl Acad. Sci. USA 115, 9456–9461 (2018).

    Article  CAS  Google Scholar 

  184. Harrow, A. W., Hassidim, A. & Lloyd, S. Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009).

    Article  CAS  Google Scholar 

  185. Farhi, E., Goldstone, J. & Gutmann, S. A quantum approximate optimization algorithm. Preprint at https://arxiv.org/abs/1411.4028 (2014).

  186. Green, D., Soller, H., Oreg, Y. & Galitski, V. How to profit from quantum technology without building quantum computers. Nat. Rev. Phys. 3, 150–152 (2021).

    Article  Google Scholar 

  187. Bertuzzi, M., Chang, W. & Ampatzis, K. Adult spinal motoneurons change their neurotransmitter phenotype to control locomotion. Proc. Natl Acad. Sci. USA 115, 9926–9933 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge S. M. Bohaichuk and R. S. Williams for feedback on the manuscript. S.K. was supported by the Laboratory Directed Research and Development programme at Sandia National Laboratories, a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. Y.Y. acknowledges support from the National Key Research and Development Program of China (2017YFA0207600), National Natural Science Foundation of China (61925401, 92064004), projects 2019BD002 and 2020BD010 supported by PKU-Baidu Fund, the Fok Ying-Tong Education Foundation, Beijing Academy of Artificial Intelligence (BAAI) and the Tencent Foundation through the XPLORER PRIZE. X.W. and W.D.L. acknowledge financial support from the National Science Foundation through awards CCF-1900675 and DMR-1810119.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the conception of the ideas, literature review, writing of the manuscript, preparation of the figures and editing.

Corresponding authors

Correspondence to Suhas Kumar, Yuchao Yang or Wei D. Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Leon O. Chua, Mario Lanza and J. Joshua Yang for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Wang, X., Strachan, J.P. et al. Dynamical memristors for higher-complexity neuromorphic computing. Nat Rev Mater 7, 575–591 (2022). https://doi.org/10.1038/s41578-022-00434-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-022-00434-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing