Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Bacterial origins of human cell-autonomous innate immune mechanisms

Abstract

The cell-autonomous innate immune system enables animal cells to resist viral infection. This system comprises an array of sensors that, after detecting viral molecules, activate the expression of antiviral proteins and the interferon response. The repertoire of immune sensors and antiviral proteins has long been considered to be derived from extensive evolutionary innovation in vertebrates, but new data challenge this dogma. Recent studies show that central components of the cell-autonomous innate immune system have ancient evolutionary roots in prokaryotic genes that protect bacteria from phages. These include the cyclic GMP–AMP synthase (cGAS)–stimulator of interferon genes (STING) pathway, Toll/IL-1 receptor (TIR) domain-containing pathogen receptors, the viperin family of antiviral proteins, SAMHD1-like nucleotide-depletion enzymes, gasdermin proteins and key components of the RNA interference pathway. This Perspective details current knowledge of the elements of antiviral immunity that are conserved from bacteria to humans, and presents possible evolutionary scenarios to explain the observed conservation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Innate immune mechanisms shared between eukaryotes and prokaryotes.
Fig. 2: A potential evolutionary scenario to explain the conservation of immune mechanisms between prokaryotes and eukaryotes.

Similar content being viewed by others

References

  1. Randow, F., MacMicking, J. D. & James, L. C. Cellular self-defense: how cell-autonomous immunity protects against pathogens. Science 340, 701–706 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Schoggins, J. W. Interferon-stimulated genes: what do they all do? Annu. Rev. Virol. 6, 567–584 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Litman, G. W., Cannon, J. P. & Dishaw, L. J. Reconstructing immune phylogeny: new perspectives. Nat. Rev. Immunol. 5, 866–879 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cohen, D. et al. Cyclic GMP–AMP signalling protects bacteria against viral infection. Nature 574, 691–695 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Bernheim, A. et al. Prokaryotic viperins produce diverse antiviral molecules. Nature 589, 120–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Johnson, A. G. et al. Bacterial gasdermins reveal an ancient mechanism of cell death. Science 375, 221–225 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ofir, G. et al. Antiviral activity of bacterial TIR domains via immune signaling molecules. Nature 600, 116–120 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Swarts, D. C. et al. The evolutionary journey of Argonaute proteins. Nat. Struct. Mol. Biol. 21, 743–753 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tal, N. et al. Bacteria deplete deoxynucleotides to defend against bacteriophage infection. Nat. Microbiol. (in the press).

  10. Bernheim, A. & Sorek, R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat. Microbiol. Rev. 4, 2744–2747 (2019).

    Google Scholar 

  11. Doron, S. et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359, eaar4120 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP–AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Keating, S. E., Baran, M. & Bowie, A. G. Cytosolic DNA sensors regulating type I interferon induction. Trends Immunol. 32, 574–581 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Hornung, V. & Latz, E. Intracellular DNA recognition. Nat. Rev. Immunol. 10, 123–130 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Ablasser, A. et al. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 498, 380–384 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gao, P. et al. Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP–AMP synthase. Cell 153, 1094–1107 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Diner, E. J. et al. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep. 3, 1355–1361 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu, J. et al. Cyclic GMP–AMP as an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–831 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Ablasser, A. & Chen, Z. J. cGAS in action: expanding roles in immunity and inflammation. Science 363, eaat8657 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Hopfner, K. P. & Hornung, V. Molecular mechanisms and cellular functions of cGAS–STING signalling. Nat. Rev. Mol. Cell Biol. 21, 501–521 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Tan, X., Sun, L., Chen, J. & Chen, Z. J. Detection of microbial infections through innate immune sensing of nucleic acids. Annu. Rev. Microbiol. 72, 447–478 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Li, X. D. et al. Pivotal roles of cGAS–cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341, 1390–1394 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Motwani, M., Pesiridis, S. & Fitzgerald, K. A. DNA sensing by the cGAS–STING pathway in health and disease. Nat. Rev. Genet. 20, 657–674 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Margolis, S. R., Wilson, S. C. & Vance, R. E. Evolutionary origins of cGAS–STING signaling. Trends Immunol. 38, 733–743 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Wu, X. et al. Molecular evolutionary and structural analysis of the cytosolic DNA sensor cGAS and STING. Nucleic Acids Res. 42, 8243–8257 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Morehouse, B. R. et al. STING cyclic dinucleotide sensing originated in bacteria. Nature 586, 429–433 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kranzusch, P. J. et al. Ancient origin of cGAS–STING reveals mechanism of universal 2′,3′ cGAMP signaling. Mol. Cell 59, 891–903 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Davies, B. W., Bogard, R. W., Young, T. S. & Mekalanos, J. J. Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence. Cell 149, 358–370 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Krasteva, P. V. & Sondermann, H. Versatile modes of cellular regulation via cyclic dinucleotides. Nat. Chem. Biol. 13, 350–359 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kranzusch, P. J. et al. Structure-guided reprogramming of human cGAS dinucleotide linkage specificity. Cell 158, 1011–1021 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Whiteley, A. T. et al. Bacterial cGAS-like enzymes synthesize diverse nucleotide signals. Nature 567, 194–199 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhu, D. et al. Structural biochemistry of a Vibrio cholerae dinucleotide cyclase reveals cyclase activity regulation by folates. Mol. Cell 55, 931–937 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Severin, G. B. et al. Direct activation of a phospholipase by cyclic GMP–AMP in El Tor Vibrio cholerae. Proc. Natl Acad. Sci. USA 115, E6048–E6055 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Millman, A., Melamed, S., Amitai, G. & Sorek, R. Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems. Nat. Microbiol. 5, 1608–1615 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lowey, B. et al. CBASS immunity uses CARF-related effectors to sense 3′–5′- and 2′–5′-sinked cyclic oligonucleotide signals and protect bacteria from phage infection. Cell 182, 38–49 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ye, Q. et al. HORMA domain proteins and a Trip13-like ATPase regulate bacterial cGAS-like enzymes to mediate bacteriophage immunity. Mol. Cell 77, 709–722 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lau, R. K. et al. Structure and mechanism of a cyclic trinucleotide-activated bacterial endonuclease mediating bacteriophage immunity. Mol. Cell 77, 723–733 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Govande, A. A., Duncan-Lowey, B., Eaglesham, J. B., Whiteley, A. T. & Kranzusch, P. J. Molecular basis of CD-NTase nucleotide selection in CBASS anti-phage defense. Cell Rep. 35, 109206 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Kranzusch, P. J. cGAS and CD-NTase enzymes: structure, mechanism, and evolution. Curr. Opin. Struct. Biol. 59, 178–187 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Duncan-Lowey, B., McNamara-Bordewick, N. K., Tal, N., Sorek, R. & Kranzusch, P. J. Effector-mediated membrane disruption controls cell death in CBASS antiphage defense. Mol. Cell 81, 1–13 (2021).

    Article  Google Scholar 

  41. Burroughs, A. M., Zhang, D., Schäffer, D. E., Iyer, L. M. & Aravind, L. Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling. Nucleic Acids Res. 43, 10633–10654 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Helbig, K. J. & Beard, M. R. The role of viperin in the innate antiviral response. J. Mol. Biol. 426, 1210–1219 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Seo, J. Y., Yaneva, R. & Cresswell, P. Viperin: a multifunctional, interferon-inducible protein that regulates virus replication. Cell Host Microbe 10, 534–539 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chin, K. C. & Cresswell, P. Viperin (cig5), an IFN-inducible antiviral protein directly induced by human cytomegalovirus. Proc. Natl Acad. Sci. USA 98, 15125–15130 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rivera-Serrano, E. E. et al. Viperin reveals its true function. Annu. Rev. Virol. 7, 421–446 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gizzi, A. S. et al. A naturally occurring antiviral ribonucleotide encoded by the human genome. Nature 558, 610–614 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Seifert, M. et al. Inhibition of SARS-CoV-2 polymerase by nucleotide analogs from a single-molecule perspective. eLife 10, e70968 (2021).

    Article  CAS  Google Scholar 

  48. Fenwick, M. K., Li, Y., Cresswell, P., Modis, Y. & Ealick, S. E. Structural studies of viperin, an antiviral radical SAM enzyme. Proc. Natl Acad. Sci. USA 114, 6806–6811 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Makarova, K. S., Wolf, Y. I., Snir, S. & Koonin, E. V. Defense islands in bacterial and archaeal genomes and prediction of novel defense systems. J. Bacteriol. 193, 6039–6056 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lachowicz, J. C., Gizzi, A. S., Almo, S. C. & Grove, T. L. Structural insight into the substrate scope of viperin and viperin-like enzymes from three domains of life. Biochemistry 60, 2116–2129 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Hollenbaugh, J. A. et al. Host factor SAMHD1 restricts DNA viruses in non-dividing myeloid cells. PLoS Pathog. 9, e1003481 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Baldauf, H. M. et al. SAMHD1 restricts HIV-1 infection in resting CD4+ T cells. Nat. Med. 18, 1682–1687 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Hrecka, K. et al. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474, 658–661 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Laguette, N. et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474, 654–657 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li, N., Zhang, W. & Cao, X. Identification of human homologue of mouse IFN-γ induced protein from human dendritic cells. Immunol. Lett. 74, 221–224 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Ayinde, D., Casartelli, N. & Schwartz, O. Restricting HIV the SAMHD1 way: through nucleotide starvation. Nat. Rev. Microbiol. 10, 675–680 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Goldstone, D. C. et al. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 480, 379–382 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Kondo, N. et al. Insights into different dependence of dNTP triphosphohydrolase on metal ion species from intracellular ion concentrations in Thermus thermophilus. Extremophiles 12, 217–223 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Mega, R., Kondo, N., Nakagawa, N., Kuramitsu, S. & Masui, R. Two dNTP triphosphohydrolases from Pseudomonas aeruginosa possess diverse substrate specificities. FEBS J. 276, 3211–3221 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Singh, D. et al. Structure of Escherichia coli dGTP triphosphohydrolase: a hexameric enzyme with DNA effector molecules. J. Biol. Chem. 290, 10418–10429 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Barnes, C. O. et al. The crystal structure of dGTPase reveals the molecular basis of dGTP selectivity. Proc. Natl Acad. Sci. USA 116, 9333–9339 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Severin, G. et al. A broadly conserved deoxycytidine deaminase protects bacteria from phage infection. Preprint at bioRxiv https://doi.org/10.1101/2021.03.31.437871 (2021).

    Article  Google Scholar 

  63. Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153–158 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. He, W. T. et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 25, 1285–1298 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bergsbaken, T., Fink, S. L. & Cookson, B. T. Pyroptosis: host cell death and inflammation. Nat. Rev. Microbiol. 7, 99–109 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ding, J. et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111–116 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Liu, Z. et al. Crystal structures of the full-length murine and human Gasdermin D reveal mechanisms of autoinhibition, lipid binding, and oligomerization. Immunity 51, 43–49 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ruan, J., Xia, S., Liu, X., Lieberman, J. & Wu, H. Cryo-EM structure of the gasdermin A3 membrane pore. Nature 557, 62–67 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xia, S. et al. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature 593, 607–611 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jiang, S., Zhou, Z., Sun, Y., Zhang, T. & Sun, L. Coral gasdermin triggers pyroptosis. Sci. Immunol. 5, eabd2591 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Daskalov, A., Mitchell, P. S., Sandstrom, A., Vance, R. E. & Glass, N. L. Molecular characterization of a fungal gasdermin-like protein. Proc. Natl Acad. Sci. USA 117, 18600–18607 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Baulcombe, D. RNAi in plants. Nature 431, 356–363 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Haasnoot, J., Westerhout, E. M. & Berkhout, B. RNA interference against viruses: strike and counterstrike. Nat. Biotechnol. 25, 1435–1443 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ding, S. W. RNA-based antiviral immunity. Nat. Rev. Immunol. 10, 632–644 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Guo, Z., Li, Y. & Ding, S. W. Small RNA-based antimicrobial immunity. Nat. Rev. Immunol. 19, 31–44 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Wilson, R. C. & Doudna, J. A. Molecular mechanisms of RNA interference. Annu. Rev. Biophys. 42, 217–239 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R. & Hannon, G. J. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293, 1146–1150 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Raja, P., Jackel, J. N., Li, S., Heard, I. M. & Bisaro, D. M. Arabidopsis double-stranded RNA binding protein DRB3 participates in methylation-mediated defense against geminiviruses. J. Virol. 88, 2611–2622 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Raja, P., Sanville, B. C., Buchmann, R. C. & Bisaro, D. M. Viral genome methylation as an epigenetic defense against geminiviruses. J. Virol. 82, 8997–9007 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li, H., Li, W. X. & Ding, S. W. Induction and suppression of RNA silencing by an animal virus. Science 296, 1319–1321 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Berkhout, B. RNAi-mediated antiviral immunity in mammals. Curr. Opin. Virol. 32, 9–14 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Ding, S.-W., Han, Q., Wang, J. & Li, W.-X. Antiviral RNA interference in mammals. Curr. Opin. Immunol. 54, 109–114 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Poirier, E. Z. et al. An isoform of Dicer protects mammalian stem cells against multiple RNA viruses. Science 373, 231–236 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sledz, C. A., Holko, M., De Veer, M. J., Silverman, R. H. & Williams, B. R. G. Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol. 5, 834–839 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Song, J. J., Smith, S. K., Hannon, G. J. & Joshua-Tor, L. Crystal structure of argonaute and its implications for RISC slicer activity. Science 305, 1434–1437 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Parker, J. S., Roe, S. M. & Barford, D. Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. EMBO J. 23, 4727–4737 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yuan, Y. R. et al. Crystal structure of A. aeolicus Argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. Mol. Cell 19, 405–419 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Makarova, K. S., Wolf, Y. I., van der Oost, J. & Koonin, E. V. Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biol. Direct 4, 29 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Swarts, D. C. et al. DNA-guided DNA interference by a prokaryotic Argonaute. Nature 507, 258–261 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Olovnikov, I., Chan, K., Sachidanandam, R., Newman, D. K. & Aravin, A. A. Bacterial Argonaute samples the transcriptome to identify foreign DNA. Mol. Cell 51, 594–605 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Kuzmenko, A. et al. DNA targeting and interference by a bacterial Argonaute nuclease. Nature 587, 632–637 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Zander, A. et al. Guide-independent DNA cleavage by archaeal Argonaute from Methanocaldococcus jannaschii. Nat. Microbiol. 2, 17034 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Swarts, D. C. et al. Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA. Nucleic Acids Res. 43, 5120–5129 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hegge, J. W. et al. DNA-guided DNA cleavage at moderate temperatures by Clostridium butyricum Argonaute. Nucleic Acids Res. 47, 5809–5821 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sheng, G. et al. Structure-based cleavage mechanism of Thermus thermophilus argonaute DNA guide strand-mediated DNA target cleavage. Proc. Natl Acad. Sci. USA 111, 652–657 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Kuzmenko, A., Yudin, D., Ryazansky, S., Kulbachinskiy, A. & Aravin, A. A. Programmable DNA cleavage by Ago nucleases from mesophilic bacteria Clostridium butyricum and Limnothrix rosea. Nucleic Acids Res. 47, 5822–5836 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Swarts, D. C. et al. Autonomous generation and loading of DNA guides by bacterial Argonaute. Mol. Cell 65, 985–998 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kaya, E. et al. A bacterial Argonaute with noncanonical guide RNA specificity. Proc. Natl Acad. Sci. USA 113, 4057–4062 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kropocheva, E., Kuzmenko, A., Aravin, A. A., Esyunina, D. & Kulbachinskiy, A. A programmable pAgo nuclease with universal guide and target specificity from the mesophilic bacterium Kurthia massiliensis. Nucleic Acids Res. 49, 4054–4065 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Garb, J. et al. Multiple phage resistance systems inhibit infection via SIR2-dependent NAD+ depletion. Preprint at bioRxiv https://doi.org/10.1101/2021.12.14.472415 (2021).

    Article  Google Scholar 

  104. Zaremba, M. et al. SIR2-domain associated short prokaryotic Argonautes provide defence against invading mobile genetic elements through NAD+ depletion. Preprint at bioRxiv https://doi.org/10.1101/2021.12.14.472599 (2021).

    Article  Google Scholar 

  105. Zeng, Z. et al. A short prokaryotic argonaute cooperates with membrane effector to confer antiviral defense. Preprint at bioRxiv https://doi.org/10.1101/2021.12.09.471704 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Koonin, E. V. Evolution of RNA- and DNA-guided antivirus defense systems in prokaryotes and eukaryotes: common ancestry vs convergence. Biol. Direct 12, 5–14 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Shabalina, S. A. & Koonin, E. V. Origins and evolution of eukaryotic RNA interference. Trends Ecol. Evol. 23, 578–587 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Leulier, F. & Lemaitre, B. Toll-like receptors — taking an evolutionary approach. Nat. Rev. Genet. 9, 165–178 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Toshchakov, V. Y. & Neuwald, A. F. A survey of TIR domain sequence and structure divergence. Immunogenetics 72, 181–203 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Brubaker, S. W., Bonham, K. S., Zanoni, I. & Kagan, J. C. Innate immune pattern recognition: a cell biological perspective. Annu. Rev. Immunol. 33, 257–290 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Burch-Smith, T. M. & Dinesh-Kumar, S. P. The functions of plant TIR domains. Sci. STKE 2007, 1–5 (2007).

    Article  Google Scholar 

  113. Wan, L. et al. TIR domains of plant immune receptors are NAD+-cleaving enzymes that promote cell death. Science 365, 799–803 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Horsefield, S. et al. NAD+ cleavage activity by animal and plant TIR domains in cell death pathways. Science 365, 793–799 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Balint-Kurti, P. The plant hypersensitive response: concepts, control and consequences. Mol. Plant. Pathol. 20, 1163–1178 (2019).

    PubMed  PubMed Central  Google Scholar 

  116. Bayless, A. M. & Nishimura, M. T. Enzymatic functions for Toll/interleukin-1 receptor domain proteins in the plant immune system. Front. Genet. 11, 1–16 (2020).

    Article  Google Scholar 

  117. Duxbury, Z. et al. Induced proximity of a TIR signaling domain on a plant-mammalian NLR chimera activates defense in plants. Proc. Natl Acad. Sci. USA 117, 18832–18839 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tal, N. et al. Cyclic CMP and cyclic UMP mediate bacterial immunity against phages. Cell 184, 5728–5739 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Essuman, K. et al. The SARM1 Toll/interleukin-1 receptor domain possesses intrinsic NAD+ cleavage activity that promotes pathological axonal degeneration. Neuron 93, 1334–1343 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Martin, W. F., Garg, S. & Zimorski, V. Endosymbiotic theories for eukaryote origin. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140330 (2015).

    Article  Google Scholar 

  121. Ku, C. et al. Endosymbiotic origin and differential loss of eukaryotic genes. Nature 524, 427–432 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Esser, C. et al. A genome phylogeny for mitochondria among α-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Mol. Biol. Evol. 21, 1643–1660 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Brueckner, J. & Martin, W. F. Bacterial genes outnumber archaeal genes in eukaryotic genomes. Genome Biol. Evol. 12, 282–292 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Broz, P., Pelegrín, P. & Shao, F. The gasdermins, a protein family executing cell death and inflammation. Nat. Rev. Immunol. 20, 143–157 (2019).

    Article  PubMed  Google Scholar 

  125. De Schutter, E. et al. Punching holes in cellular membranes: biology and evolution of gasdermins. Trends Cell Biol. 31, 500–513 (2021).

    Article  PubMed  Google Scholar 

  126. Wu, J. & Chen, Z. J. Innate immune sensing and signaling of cytosolic nucleic acids. Annu. Rev. Immunol. 32, 461–488 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Slavik, K. M. et al. cGAS-like receptors sense RNA and control 3′2′-cGAMP signalling in Drosophila. Nature 597, 109–113 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Civril, F. et al. Structural mechanism of cytosolic DNA sensing by cGAS. Nature 498, 332–337 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kranzusch, P. J., Lee, A. S. Y., Berger, J. M. & Doudna, J. A. Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity. Cell Rep. 3, 1362–1368 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ishikawa, H. & Barber, G. N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674–678 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ebert, D. & Fields, P. D. Host–parasite co-evolution and its genomic signature. Nat. Rev. Genet. 21, 754–768 (2020).

    Article  CAS  PubMed  Google Scholar 

  132. Sackton, T. B. et al. Dynamic evolution of the innate immune system in Drosophila. Nat. Genet. 39, 1461–1468 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Obbard, D. J., Jiggins, F. M., Bradshaw, N. J. & Little, T. J. Recent and recurrent selective sweeps of the antiviral RNAi gene Argonaute-2 in three species of Drosophila. Mol. Biol. Evol. 28, 1043–1056 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Söding, J. Protein homology detection by HMM–HMM comparison. Bioinformatics 21, 951–960 (2005).

    Article  PubMed  Google Scholar 

  135. Koyuncu, E. et al. Sirtuins are evolutionarily conserved viral restriction factors. mBio 5, e02249-14 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Goubau, D., Deddouche, S. & Reise Sousa, C. Cytosolic sensing of viruses. Immunity 38, 855–869 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat. Immunol. 11, 373–384 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Chen, Y. G. & Hur, S. Cellular origins of dsRNA, their recognition and consequences. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-021-00430-1 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Chemudupati, M. et al. From APOBEC to ZAP: diverse mechanisms used by cellular restriction factors to inhibit virus infections. Biochim. Biophys. Acta Mol. Cell Res. 1866, 382–394 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. Bailey, C. C., Zhong, G., Huang, I. C. & Farzan, M. IFITM-family proteins: the cell’s first line of antiviral defense. Annu. Rev. Virol. 1, 261–283 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Spence, J. S. et al. IFITM3 directly engages and shuttles incoming virus particles to lysosomes. Nat. Chem. Biol. 15, 259–268 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Neil, S. J. D., Zang, T. & Bieniasz, P. D. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451, 425–430 (2008).

    Article  CAS  PubMed  Google Scholar 

  144. Kieser, K. J. & Kagan, J. C. Multi-receptor detection of individual bacterial products by the innate immune system. Nat. Rev. Immunol. 17, 376–390 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Deretic, V., Saitoh, T. & Akira, S. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 13, 722–737 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Billings, E. A. et al. The adhesion GPCR BAI1 mediates macrophage ROS production and microbicidal activity against Gram-negative bacteria. Sci. Signal. 9, 1–13 (2016).

    Article  Google Scholar 

  147. Kayagaki, N. et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 130, 1246–1249 (2013).

    Article  Google Scholar 

  148. Brüssow, H. & Hendrix, R. W. Phage genomics: small is beautiful. Cell 108, 13–16 (2002).

    Article  PubMed  Google Scholar 

  149. Peterson, S. B., Bertolli, S. K. & Mougous, J. D. The central role of interbacterial antagonism in bacterial life. Curr. Biol. 30, R1203–R1214 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hampton, H. G., Watson, B. N. J. & Fineran, P. C. The arms race between bacteria and their phage foes. Nature 577, 327–336 (2020).

    Article  CAS  PubMed  Google Scholar 

  151. Oliveira, P. H., Touchon, M. & Rocha, E. P. C. The interplay of restriction–modification systems with mobile genetic elements and their prokaryotic hosts. Nucleic Acids Res. 42, 10618–10631 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tock, M. R. & Dryden, D. T. F. The biology of restriction and anti-restriction. Curr. Opin. Microbiol. 8, 466–472 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Hille, F. et al. The biology of CRISPR–Cas: backward and forward. Cell 172, 1239–1259 (2018).

    Article  CAS  PubMed  Google Scholar 

  155. Gao, L. et al. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Millman, A. et al. Bacterial retrons function in anti-phage defense. Cell 183, 1551–1561 (2020).

    Article  CAS  PubMed  Google Scholar 

  157. Depardieu, F. et al. A eukaryotic-like serine/threonine kinase protects Staphylococci against phages. Cell Host Microbe 20, 471–481 (2016).

    Article  CAS  PubMed  Google Scholar 

  158. Owen, S. V. et al. Prophages encode phage-defense systems with cognate self-immunity. Cell Host Microbe 29, 1620–1633 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Goldfarb, T. et al. BREX is a novel phage resistance system widespread in microbial genomes. EMBO J. 34, 169–183 (2015).

    Article  CAS  PubMed  Google Scholar 

  160. Lopatina, A., Tal, N. & Sorek, R. Abortive infection: bacterial suicide as an antiviral immune strategy. Annu. Rev. Virol. 7, 371–384 (2020).

    Article  CAS  PubMed  Google Scholar 

  161. Blanga-Kanfi, S., Amitsur, M., Azem, A. & Kaufmann, G. PrrC-anticodon nuclease: functional organization of a prototypical bacterial restriction RNase. Nucleic Acids Res. 34, 3209–3219 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Penner, M., Morad, I., Snyder, L. & Kaufmann, G. Phage T4-coded Stp: double-edged effector of coupled DNA and tRNA-restriction systems. J. Mol. Biol. 249, 857–868 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank P. Kranzusch, as well as the Sorek laboratory members, for fruitful discussion and comments on this manuscript. R.S. is supported, in part, by the European Research Council (grant ERC-AdG GA 101018520), Israel Science Foundation (grant ISF 296/21), the Deutsche Forschungsgemeinschaft (SPP 2330, grant 464312965), the Ernest and Bonnie Beutler Research Program of Excellence in Genomic Medicine, the Minerva Foundation with funding from the Federal German Ministry for Education and Research, and the Knell Family Center for Microbiology. T.W. is supported by a Minerva Foundation postdoctoral fellowship and by a European Molecular Biology Organization (EMBO) postdoctoral fellowship (ALTF 946-2020).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Rotem Sorek.

Ethics declarations

Competing interests

R.S. is a scientific cofounder and advisor of BiomX and Ecophage. T.W. declares no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks Z. Chen; L. Dishaw, who co-reviewed with O. Nataran; and J. van der Oost, who co-reviewed with R. Staals, for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wein, T., Sorek, R. Bacterial origins of human cell-autonomous innate immune mechanisms. Nat Rev Immunol 22, 629–638 (2022). https://doi.org/10.1038/s41577-022-00705-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-022-00705-4

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology