Library Subscription: Guest
Critical Reviews™ in Therapeutic Drug Carrier Systems

Published 6 issues per year

ISSN Print: 0743-4863

ISSN Online: 2162-660X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 3.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.8 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.39 SJR: 0.42 SNIP: 0.89 CiteScore™:: 5.5 H-Index: 79

Indexed in

Exploration of 3D Printing of Anti-Infective Urinary Catheters: Materials and Approaches to Combat Catheter-Associated Urinary Tract Infections (CAUTIs) - A Review

Volume 39, Issue 5, 2022, pp. 51-82
DOI: 10.1615/CritRevTherDrugCarrierSyst.2022040452
Get accessDownload

ABSTRACT

Three-dimensional (3D) printing is a pioneering technology that has gained increased popularity in the fields of tissue engineering, drug design, drug delivery systems and biomedical devices. Thus, it enables us to explore this technique for fabricating 3D-printed catheters. Owing to its enhanced productivity and cost-efficiency, this technique can be utilized to fabricate any material for manufacturing or designing catheters with antimicrobial properties. From 1930s, Foley's catheter had been widely used to drain the urinary bladder of patients with impaired bladder function. Despite the complications like catheter-associated urinary tract infections (CAUTIs), kidney damage, chronic infections, encrustations and personal discomfort during inflation of the balloon, Foley's catheter was used universally without any changes in product design. Currently, marketed catheters have been reported for reducing CAUTI, but the prevention of limitations by coating drugs onto the catheter is very expensive. Altering the physical properties of the catheter by biopolymer blend might ease the discomfort. Thus, new technologies have to be adopted to manufacture ideal catheters that are biocompatible and provide antimicrobial and anti-fouling properties. Herein, we provide an overview of 3D printing techniques along with different materials opted for manufacturing catheters to overcome the existing challenges and limitations.

REFERENCES
  1. Park BJ, Choi HJ, Moon SJ, Kim S, Bajracharya R, Min J, Han HK. Pharmaceutical applications of 3D printing technology: Current understanding and future perspectives. J Pharm Investig. 2018;49:575-85.

  2. Diment LE, Thompson MS, Bergmann JHM. Clinical efficacy and effectiveness of 3D printing: A systematic review. BMJ Open. 2017;7(12):e016891.

  3. Katakam P, Dey B, Assaleh FH, Hwisa NT, Adiki SK, Chandu BR, Mitra A. Top-down and bottom-up approaches in 3D printing technologies for drug delivery challenges. Crit Rev Ther Drug Carrier Syst. 2015;32(1):61-87.

  4. Lewis SA. Everything you wanted to know about the bladder epithelium but were afraid to ask. Am J Physiol Renal Physiol. 2000;278(6):F867-74.

  5. InformedHealth.org [Internet]. How does the urinary system work? Cologne, Germany: Institute for Quality and Efficiency in Health Care (IQWiG); 2006.

  6. Fowler CJ, Griffiths D, de Groat WC. The neural control of micturition. Nat Rev Neurosci. 2008;9(6):453-66.

  7. Milo S, Nzakizwanayo J, Hathaway HJ, Jones BV, Jenkins ATA. Emerging medical and engineering strategies for the prevention of long-term indwelling catheter blockage. Proc Inst Mech Eng H. 2019;233(1):68-83.

  8. Thomas-White K, Brady M, Wolfe AJ, Mueller ER. The bladder is not sterile: History and current discoveries on the urinary microbiome. Curr Bladder Dysfunct Rep. 2016;11(1):18-24.

  9. Magruder M, Sholi AN, Gong C, Zhang L, Edusei E, Huang J, Albakry S, Satlin MJ, Westblade LF, Crawford C, Dadhania DM, Lubetzky M, Taur Y, Littman E, Ling L, Burnham P, De Vlaminck I, Pamer E, Suthanthiran M, Lee JR. Gut uropathogen abundance is a risk factor for development of bacteriuria and urinary tract infection. Nat Commun. 2019;10:5521.

  10. Hsiao CY, Yang HY, Hsiao MC, Hung PH, Wang MC. Risk factors for development of acute kidney injury in patients with urinary tract infection. PLoS One. 2015;10(7):e0133835.

  11. Carr HA. A short history of the Foley catheter: From handmade instrument to infection-prevention device. J Endourol. 2000;14(1):5-8.

  12. Shah J. Catheterisation. Ann R Coll Surg Engl. 2012;94(1):5-7.

  13. Subramanian V, Soni BM, Hughes PL, Singh G, Oo T. The risk of intra-urethral Foley catheter balloon inflation in spinal cord-injured patients: Lessons learned from a retrospective case series. Patient Saf Surg. 2016;10:14.

  14. Lukacz ES, Sampselle C, Gray M, Macdiarmid S, Rosenberg M, Ellsworth P, Palmer MH. A healthy bladder: A consensus statement. Int J Clin Pract. 2011;65(10):1026-36.

  15. Pardeshi P. Prevalence of urinary tract infections and current scenario of antibiotic susceptibility pattern of bacteria causing UTI. Indian J Microbiol Res: 2018; 5(3):334-8.

  16. Muhammad A, Khan SN, Ali N, Rehman MU, Ali I. Prevalence and antibiotic susceptibility pattern of uropathogens in outpatients at a tertiary care hospital. New Microbes New Infect. 2020;36: 100716.

  17. Zhu C, Liu H, Wang Y, Jiao J, Li Z, Cao J, Song B, Jin J, Liu Y, Wen X, Cheng S, Wu X. Prevalence, incidence, and risk factors of urinary tract infection among immobile inpatients in China: A prospective, multi-centre study. J Hosp Infect. 2020;104(4):538-44.

  18. Stamm WE, Norrby SR. Urinary tract infections: Disease panorama and challenges. J Infect Dis. 2001;183(Suppl 1):S1-4.

  19. Kant S, Lohiya A, Kapil A, Gupta SK. Urinary tract infection among pregnant women at a secondary level hospital in Northern India. Indian J Public Health. 2017;61(2):118-23.

  20. Sewify M, Nair S, Warsame S, Murad M, Alhubail A, Behbehani K, Tiss A. Prevalence of urinary tract infection and antimicrobial susceptibility among diabetic patients with controlled and uncontrolled glycemia in kuwait. J Diabetes Res. 2016;2016:6572315.

  21. Smelov V, Naber K, Bjerklund Johansen TE. Improved classification of urinary tract infection: Future considerations. Eur Urol Suppl. 2016;15:71-80.

  22. Medina M, Castillo-Pino E. An introduction to the epidemiology and burden of urinary tract infections. Ther Adv Urol. 2019;11:1756287219832172.

  23. Yamamoto S. Prevention and treatment of complicated urinary tract infection. Urol Sci. 2016;27(4):186-9.

  24. Colgan R, Williams M. Diagnosis and treatment of acute uncomplicated cystitis. Am Fam Physician. 2011;84(7):771-6.

  25. Colgan R, Williams M, Johnson JR. Diagnosis and treatment of acute pyelonephritis in women. Am Fam Physician. 2011;84(5):519-26.

  26. Biggel M, Heytens S, Latour K, Bruyndonckx R, Goossens H, Moons P. Asymptomatic bacteriuria in older adults: The most fragile women are prone to long-term colonization. BMC Geriatr. 2019;19(1):170.

  27. Dason S, Dason JT, Kapoor A. Guidelines for the diagnosis and management of recurrent urinary tract infection in women. Can Urol Assoc J. 2011;5(5):316-22.

  28. Kodner CM, Thomas Gupton EK. Recurrent urinary tract infections in women: Diagnosis and management. Am Fam Physician. 2010;82(6):638-43.

  29. Letica-Kriegel AS, Salmasian H, Vawdrey DK, Youngerman BE, Green RA, Furuya EY, Calfee DP, Perotte R. Identifying the risk factors for catheter-associated urinary tract infections: A large cross-sectional study of six hospitals. BMJ Open. 2019;9(2):e022137.

  30. Terlizzi ME, Gribaudo G, Maffei ME. UroPathogenic Escherichia coli (UPEC) infections: Virulence factors, bladder responses, antibiotic, and non-antibiotic antimicrobial strategies. Front Microbiol. 2017;8:1566.

  31. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015;13(5):269-84.

  32. McLellan LK, Hunstad DA. Urinary tract infection: Pathogenesis and outlook. Trends Mol Med. 2016;22(11):946-57.

  33. Behzadi P, Behzadi E, Ranjbar R. Urinary tract infections and Candida albicans. Cent Eur J Urol. 2015;68(1):96-101.

  34. Zarb P, Coignard B, Griskeviciene J, Muller A, Vankerckhoven V, Weist K, Goossens M, Vaerenberg S, Hopkins S, Catty B, Monnet D, Goossens H, Suetens C. The European Centre for Disease Prevention and Control (ECDC) pilot point prevalence survey of healthcare-associated infections and antimicrobial use. Euro Surveill. 2012;17(46):20316.

  35. Magill SS, Edwards JR, Beldavs ZG, Dumyati G, Janelle SJ, Kainer MA, Lynfield R, Nadle J, Neuhauser MM, Ray SM, Richards K, Rodriguez R, Thompson DL, Fridkin SK. Emerging infections program healthcare-associated infections and antimicrobial use prevalence survey team. Prevalence of antimicrobial use in US acute care hospitals, May-September 2011. JAMA. 2014;312(14):1438-46.

  36. McGuire S. Centers for disease control and prevention. 2013. Strategies to prevent obesity and other chronic diseases: The CDC guide to strategies to support breastfeeding mothers and babies. Atlanta, GA: U.S. Department of Health and Human Services, 2013. Adv Nutr. 2014;5(3):291-2.

  37. Nicolle LE. Catheter associated urinary tract infections. Antimicrob Resist Infect Control. 2014;3:23.

  38. Hooton TM, Bradley SF, Cardenas DD, Colgan R, Geerlings SE, Rice JC, Saint S, Schaeffer AJ, Tambayh PA, Tenke P, Nicolle LE. Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clin Infect Dis. 2010;50(5):625-63.

  39. Dalen DM, Zvonar RK, Jessamine PG. An evaluation of the management of asymptomatic catheter-associated bacteriuria and candiduria at The Ottawa Hospital. Can J Infect Dis Med Microbiol. 2005;16(3):166-70.

  40. Lundstrom T, Sobel J. Nosocomial candiduria: A review. Clin Infect Dis. 2001;32(11):1602-7.

  41. Abu Bakar M, McKimm J, Haque SZ, Majumder MAA, Haque M. Chronic tonsillitis and biofilms: A brief overview of treatment modalities. J Inflamm Res. 2018;11:329-37.

  42. Trautner BW, Darouiche RO. Catheter-associated infections: Pathogenesis affects prevention. Arch Intern Med. 2004;164(8):842-50.

  43. Donlan RM. Biofilm elimination on intravascular catheters: Important considerations for the infectious disease practitioner. Clin Infect Dis. 2011;52(8):1038-45.

  44. Crnich CJ, Maki DG. The promise ofnovel technology for the prevention ofintravascular device-related bloodstream infection. I. Pathogenesis and short-term devices. Clin Infect Dis. 2002;34(9):1232-42.

  45. Berne C, Ducret A, Hardy GG, Bran YV. Adhesins involved in attachment to abiotic surfaces by gramnegative bacteria. Microbiol Spectr. 2015;3(4):10.1128/microbiolspec.MB-0018-2015.

  46. Jain A, Gupta Y, Agrawal R, Khare P, Jain SK. Biofilms - A microbial life perspective: A critical review. Crit Rev Ther Drug Carrier Syst. 2007;24(5):393-43.

  47. Thomas VC, Thurlow LR, Boyle D, Hancock LE. Regulation of autolysis-dependent extracellular DNA release by Enterococcus faecalis extracellular proteases influences biofilm development. J Bacteriol. 2008;190(16):5690-8.

  48. Rutherford ST, Bassler BL. Bacterial quorum sensing: Its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med. 2012;2(11):a012427.

  49. Tambyah PA, Halvorson KT, Maki DG. A prospective study of pathogenesis of catheter-associated urinary tract infections. Mayo Clin Proc. 1999;74(2):131-6.

  50. Silver SA, Baillie L, Simor AE. Positive urine cultures: A major cause of inappropriate antimicrobial use in hospitals? Can J Infect Dis Med Microbiol. 2009;20(4):107-11.

  51. Koves B, Cai T, Veeratterapillay R, Pickard R, Seisen T, Lam TB, Yuan CY, Bruyere F, Wagenlehner F, Bartoletti R, Geerlings SE, Pilatz A, Pradere B, Hofmann F, Bonkat G, Wullt B. Benefits and harms of treatment of asymptomatic bacteriuria: A systematic review and meta-analysis by the european association of urology urological infection guidelines panel. Eur Urol. 2017;72(6):865-8.

  52. Arnoldo L, Migliavacca R, Regattin L, Raglio A, Pagani L, Nucleo E, Spalla M, Vailati F, Agodi A, Mosca A, Zotti C, Tardivo S, Bianco I, Rulli A, Gualdi P, Panetta P, Pasini C, Pedroni M, Brusaferro S. Prevalence of urinary colonization by extended spectrum-beta-lactamase Enterobacteriaceae among catheterised inpatients in Italian long term care facilities. BMC Infect Dis. 2013;13:124.

  53. Mehrabi M, Salehi B, Rassi H, Dehghan A. Evaluating the antibiotic resistance and frequency of adhesion markers among Escherichia coli isolated from type 2 diabetes patients with urinary tract infection and its association with common polymorphism of mannose-binding lectin gene. New Microbes New Infect. 2020;38:100827.

  54. Hanumantha S, Pilli HPK. Catheter associated urinary tract infection(CAUTI)-Incidence and micro-biological profile in a tertiary care hospital in Andhra Pradesh. Indian J Microbiol Res. 2016;4:454-57.

  55. Thomas MH, Suzanne FB, Diana DC, Richard C, Suzanne EG, James CR, Sanjay S, Anthony JS, Paul AT, Peter T, Lindsay EN. Diagnosis, prevention, and treatment of catheter associated urinary tract infection in adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clin Infect Dis. 2010;50(5):625-63.

  56. Lo E, Nicolle LE, Coffin SE, Gould C, Maragakis LL, Meddings J, Pegues DA, Pettis AM, Saint S, Yokoe DS. Strategies to prevent catheter-associated urinary tract infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol. 2014;35(5):464-79.

  57. Mody L, Maheshwari S, Galecki A, Kauffman CA, Bradley SF. Indwelling device use and antibiotic resistance in nursing homes: Identifying a high-risk group. J Am Geriatr Soc. 2007;55(12):1921-6.

  58. Hossain MD, Ahsan S, Kabir MS. Antibiotic resistance patterns of uropathogens isolated from catheterized and noncatheterized patients in Dhaka, Bangladesh. Tzu Chi Med J. 2014;26(3):127-31.

  59. Sharma D, Misba L, Khan AU. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob Resist Infect Control. 2019;8:76.

  60. Cobussen-Boekhorst H, Beekman J, van Wijlick E, Schaafstra J, van Kuppevelt D, Heesakkers J. Which factors make clean intermittent (self) catheterisation successful? J Clin Nurs. 2016;25(9-10):1308-18.

  61. Dublynn T, Episcopia B. Female external catheter use: A new bundle element to reduce CAUTI. Am J Infect Control. 2019;47(6):39-40.

  62. Khan MY, Venkateshwarlu C, Sreenivas G, Rahul P. Study of incidence and risk factors of urinary tract infection in catheterized patients admitted at tertiary care hospital, Nizamabad, Telangana State, India. Int Arch Integr Med. 2016;3(8):83-92.

  63. Parida S, Mishra SK. Urinary tract infections in the critical care unit: A brief review. Indian J Crit Care Med. 2013;17(6):370-4.

  64. Ho CC, Khandasamy Y, Singam P, Hong Goh E, Zainuddin ZM. Encrusted and incarcerated urinary bladder catheter: What are the options? Libyan J Med. 2010;5:10.3402/ljm.v5i0.5686.

  65. Bhandari TR, Shahi S, Mahaseth N. Massive encrustations as a consequence of longterm indwelling urethral catheter: A rare case report. Ann Med Surg. 2018;34:14-6.

  66. Feneley RC, Hopley IB, Wells PN. Urinary catheters: History, current status, adverse events and research agenda. J Med Eng Technol. 2015;39(8):459-70.

  67. Mertz L. Dream it, design it, print it in 3-D: What can 3-D printing do for you? IEEE Pulse. 2013;4(6):15-21.

  68. Gokhare V, Raut D, Shindae D. A review paper on 3D-printing aspects and various processes used in the 3D-printing. Int J Eng Res Technol. 2017;6:953-8.

  69. Jamroz W, Szafraniec J, Kurek M, Jachowicz R. 3D printing in pharmaceutical and medical applications - recent achievements and challenges. Pharm Res. 2018;35(9):176.

  70. He Y, Yang F, Zhao H, Gao Q, Xia B, Fu J. Research on the printability of hydrogels in 3D bioprinting. Sci Rep. 2016;6:29977.

  71. Algahtani MS, Mohammed AA, Ahmad J. Extrusion-based 3D printing for pharmaceuticals: Contemporary research and applications. Curr Pharm Des. 2018;24(42):4991-5008.

  72. Postiglione G, Natale G, Griffini G, Levi M,Turri S. Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modelling. Compos A: Appl Sci Manuf. 2015;76:110-4.

  73. Jamroz W, Kurek M, Lyszczarz E, Szafraniec J, Knapik-Kowalczuk J, Syrek K, Paluch M, Jachowicz R. 3D-printed orodispersible films with Aripiprazole. Int J Pharm. 2017;533(2):413-20.

  74. Vozzi G, Flaim C, Bianchi F, Ahluwalia A, Bhatia S. Microfabricated PLGA scaffolds: A comparative study for application to tissue engineering. Mater Sci Eng C. 2002;20:43-7.

  75. Rosenthal M, Henneberg C, Gutkes A, Bues CT. Liquid deposition modeling: A promising approach for 3D printing of wood. Eur J Wood Wood Prod. 2017;76:797-9.

  76. Ang TH, Sulthana FSA, Hutmatcher D, Wong YS, Fuh JYH, Mo XM, Loh HT, Burdet L, Teoh H. Fabrication of 3D chitosan-hydroxyapatite scaffolds using a robotic dispensing system. Mater Sci Eng C. 2002;20(1-2):35-42.

  77. Arafat B, Wojsz M, Isreb A, Forbes RT, Isreb M, Ahmed W, Arafat T, Alhnan MA. Tablet fragmentation without a disintegrant: A novel design approach for accelerating disintegration and drug release from 3D-printed cellulosic tablets. Eur J Pharm Sci. 2018;118:191-9.

  78. Li Q, Guan X, Cui M, Zhu Z, Chen K, Wen H, Jia D, Hou J, Xu W, Yang X, Pan W. Preparation and investigation of novel gastro-floating tablets with 3D extrusion-based printing. Int J Pharm. 2018;535(1-2):325-32.

  79. Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of tablets containing multiple drugs with defined release profiles. Int J Pharm. 2015;494(2):643-50.

  80. Prakash D, Davis R, Sharma A. Design and fabrication of dental implant prototypes using additive manufacturing. IOP Conference Series: Materials Science and Engineering. 2019 Nov 12; 561. in First International Conference on Materials Science and Manufacturing Technology 12-13 April 2019, Hotel Aloft, Coimbatore, Tamil Nadu, India.

  81. Kaza A, Rembalsky J, Roma N,Yellapu V, Delong W, Stawicki S. Medical applications of stereolithography: An overview. Int J Acad Med. 2018;4:252-65.

  82. Chin SY, Dikshit V, Meera Priyadarshini B, Zhang Y. Powder-based 3D printing for the fabrication of device with micro and mesoscale features. Micromachines. 2020;11(7):658.

  83. Park BJ, Choi HJ, Moon S, Kim S, Bajracharya R, Min J, Han HK. Pharmaceutical applications of 3D printing technology: Current understanding and future perspectives. J Pharm Investig. 2018;49:575-85.

  84. AH Tullo. Cutting out phthalates: Polyvinyl chloride applications haven't been flexible enough to accept alternatives to phthalate esters. Chem Eng News. 2005;83:29-31.

  85. Sharma R, Singh R, Penna R, Fraternali F. Investigations for mechanical properties of Hap, PVC and PP based 3D porous structures obtained through biocompatible FDM filaments. Compos B Eng. 2018;132:237-43.

  86. Landrigan PJ, Carlson JE, Bearer CF, Cranmer JS, Bullard RD, Etzel RA, Groopman J, McLachlan JA, Perera FP, Reigart JR, Robison L, Schell L, Suk WA. Children's health and the environment: A new agenda for prevention research. Environ Health Perspect. 1998;106(Suppl 3):787-94.

  87. Loo CY, Young PM, Lee WH, Cavaliere R, Whitchurch CB, Rohanizadeh R. Superhydrophobic, nanotextured polyvinyl chloride films for delaying Pseudomonas aeruginosa attachment to intubation tubes and medical plastics. Acta Biomater. 2012;8(5):1881-90.

  88. Cortese YJ, Wagner VE, Tierney M, Devine D, Fogarty A. Review of catheter-associated urinary tract infections and in vitro urinary tract models. J Healthc Eng. 2018;2018:2986742.

  89. Johansson K, Greis G, Johansson B, Grundtmann A, Pahlby Y, Torn S, Axelberg H, Carlsson P. Evaluation of a new PVC-free catheter material for intermittent catheterization: A prospective, randomized, crossover study. Scand J Urol. 2013;47(1):33-7.

  90. Chamber J, Jirickny J, Reese C. The thermal decomposition of polyurethanes and polyiso cyanurates. Fire and Materials. 1981;5(4):133-41.

  91. Mathew E, Dommguez-Robles J, Stewart SA, Mancuso E, O'Donnel K, Larraneta E, Lamprou DA. Fused deposition modeling as an effective tool for anti-infective dialysis catheter fabrication. ACS Biomater Sci Eng. 2019;5(11):6300-10.

  92. Dommguez-Robles J, Mancinelli C, Mancuso E, Garda-Romero I, Casettari L, Gilmmore BF, Larraneta E, Lamprou DA. 3D printing of drug-loaded thermoplastic polyurethane meshes: A potential material for soft tissue reinforcement in vaginal surgery. Pharmaceutics. 2020;12(1):63.

  93. Gonjalves I, Abreu AS, Matama T, Ribeiro A, Gomes AC, Silva C, Cavaco-Paulo A. Enzymatic synthesis of poly(catechin)-antibiotic conjugates: An antimicrobial approach for indwelling catheters. Appl Microbiol Biotechnol. 2015;99(2):637-51.

  94. Wildgruber M, Lueg C, Borgmeyer S, Karimov I, Braun U, Kiechle M, Meier R, Koehler M, Ettl J, Berger H. Polyurethane versus silicone catheters for central venous port devices implanted at the forearm. Eur J Cancer. 2016;59:113-24.

  95. Yu K, Lo JC, Yan M, Yang X, Brooks DE, Hancock RE, Lange D, Kizhakkedathu JN. Anti-adhesive antimicrobial peptide coating prevents catheter associated infection in a mouse urinary infection model. Biomaterials. 2017;116:69-81.

  96. Kondyurina I, Nechitailo G, Svistkov A, Kondyurin A, Bilek M. Urinary catheter with polyurethane coating modified by ion implantation. Nucl Instrum Methods Phys Res B. 2015;342:39-46.

  97. Dantas LC, da Silva-Neto JP, Dantas TS, Naves LZ, das Neves FD, da Mota AS. Bacterial adhesion and surface roughness for different clinical techniques for acrylic polymethyl methacrylate. Int J Dent. 2016;2016:8685796.

  98. Nowatzki PJ, Koepsel RR, Stoodley P, Min K, Harper A, Murata H, Donfack J, Hortelano ER, Ehrlich GD, Russell AJ. Salicylic acid-releasing polyurethane acrylate polymers as anti-biofilm urological catheter coatings. Acta Biomater. 2012;8(5):1869-80.

  99. Colas A. Silicones: Preparation, properties and performance, Dow Corning, Life Science, Dow Corning Corporation; 2005. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1. 1.559.1472&rep=rep1&type=pdf.

  100. Mendoza G, Regiel-Futyra A, Tamayo A, Monzon M, Irusta S, de Gregorio MA, Kyziol A, Arruebo M. Chitosan-based coatings in the prevention of intravascular catheter-associated infections. J Biomater Appl. 2018;32(6):725-37.

  101. Verma A, Bhani D, Tomar V, Bachhiwal R, Yadav S. Differences in bacterial colonization and biofilm formation property of uropathogens between the two most commonly used indwelling urinary catheters. J Clin Diagn Res. 2016;10(6):PC01-3.

  102. Sousa C, Teixeira P, Oliveira R. Influence of surface properties on the adhesion of Staphylococcus epidermidis to acrylic and silicone. Int J Biomater. 2009;2009:718017.

  103. Farah S, Anderson D, Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review. Adv Drug Deliv Rev. 2016;107:367-92.

  104. Dommguez-Robles J, Martin NK, Fong ML, Stewart SA, Irwin NJ, Rial-Hermida MI, Donnelly RF, Larraneta E. Antioxidant PLA composites containing lignin for 3D printing applications: A potential material for healthcare applications. Pharmaceutics. 2019;11(4):165.

  105. Hall DC Jr, Palmer P, Ji HF, Ehrlich GD, Krol JE. Bacterial biofilm growth on 3D-printed materials. Front Microbiol. 2021;12:646303.

  106. Prasong W, Muanchan P, Ishigami A, Thumsorn S, Kurose T, Ito H. Properties of 3D printable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends and nano talc composites. J Nanomater. 2020:1-16.

  107. Al-Itry R, Lamnawar K, Maazouz A. Biopolymer blends based on poly(lactic acid): Shear and elongation rheology/structure/blowing process relationships. Polymers. 2015;7:939-62.

  108. Darie-Ni|a RN, Vasile C, Stoleru E, Pamfil D, Zaharescu T, Tarjau L, Tudorachi N, Brebu MA, Pricope GM, Dumitriu RP, Leluk K. Evaluation of the rosemary extract effect on the properties of polylactic acid-based materials. Materials. 2018;11(10):1825.

  109. Xu YQ, Qu JP. Mechanical and rheological properties of epoxidized soybean oil plasticized poly(lactic acid). J Appl Polymer Sci. 2009;112(6):3185-91.

  110. Hassan A, Balakrishnan H, Akbari A. Polylactic acid based blends, composites and nanocomposites. Adv Struct Mater. 2012;18:361-96.

  111. Wang S, Daelemans L, Fiorio R, Gou M, Dhooge D, Clerk K, Cardon L. Improving mechanical properties for extrusion-based additive manufacturing of poly(lactic acid) by annealing and blending with poly(3-hydroxybutyrate). Polymers. 2019;11(9):1529.

  112. Deshmukh K, Ahamed B, Deshmukh R, Pasha RK, Chidambaram K. Biopolymer composites with high dielectric performance: Interface engineering. Biopoly Compos Electron. 2017:27-128.

  113. Patricio T, Domindos M, Gloria A, Bartolo P. Characterisation of PCL and PCL/PLA scaffolds for tissue engineering. Procedia CIRP. 2013;5:110-4.

  114. Stewart SA, Dommguez-Robles J, McIlorum VJ, Gonzalez Z, Utomo E, Mancuso E, Lamprou DA, Donnelly RF, Larraneta E. Poly(caprolactone)-based coatings on 3D-printed biodegradable implants: A novel strategy to prolong delivery of hydrophilic drugs. Mol Pharm. 2020;17(9): 3487-500.

  115. Manavitehrani I, Fathi A, Badr H, Daly S, Negahi Shirazi A, Dehghani F. Biomedical applications of biodegradable polyesters. Polymers. 2016;8(1):20.

  116. Dommguez-Robles J, Diaz-Gomez L, Utomo E, Shen T, Picco CJ, Alvarez-Lorenzo C, Concheiro A, Donnelly RF, Larraneta E. Use of 3D printing for the development of biodegradable antiplatelet materials for cardiovascular applications. Pharmaceuticals. 2021;14(9):921.

  117. Tsai KJ, Dixon S, Hale LR, Darbyshire A, Martin D, de Mel A. Biomimetic heterogenous elastic tissue development. NPJ Regen Med. 2017;2:16.

  118. Weisman JA, Ballard DH, Jammalamadaka U, Tappa K, Sumerel J, D'Agostino HB, Mills DK, Woodard PK. 3D-printed antibiotic and chemotherapeutic eluting catheters for potential use in interventional radiology: In vitro proof of concept study. Acad Radiol. 2019;26(2):270-4.

  119. Hollander J, Genina N, Jukarainen H, Khajeheian M, Rosling A, Makila E, Sandler N. Three-dimensional printed PCL-based implantable prototypes of medical devices for controlled drug delivery. J Pharm Sci. 2016;105(9):2665-76.

  120. Tappa K, Jammalamadaka U, Ballard DH, Bruno T, Israel MR, Vemula H, Meacham JM, Mills DK, Woodard PK, Weisman JA. Medication eluting devices for the field of OBGYN (MEDOBGYN): 3D-printed biodegradable hormone eluting constructs, a proof of concept study. PLoS One. 2017;12(8):e0182929.

  121. Hendrikson WJ, Rouwkema J, Clementi F, van Blitterswijk CA, Fare S, Moroni L. Towards 4D printed scaffolds for tissue engineering: Exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells. Biofabrication. 2017;9(3):031001.

  122. Luis E, Pan HM, Bastola AK, Bajpai R, Sing SL, Song J, Yeong WY. 3D-printed silicone meniscus implants: Influence of the 3D printing process on properties of silicone implants. Polymers. 2020;12(9):2136.

  123. Engelhardt S, Sauerzapf S, Preim B, Karck M, Wolf I, De Simone R. Flexible and comprehensive patient-specific mitral valve silicone models with chordae tendineae made from 3D-printable molds. Int J Comput Assist Radiol Surg. 2019;14(7):1177-86.

  124. Gildea TR, Young BP, Machuzak MS. Application of 3D printing for patient-specific silicone stents: 1-year follow-up on 2 patients. Respiration. 2018;96(5):488-94.

  125. Lin M, Firoozi N, Tsai CT, Wallace MB, Kang Y. 3D-printed flexible polymer stents for potential applications in inoperable esophageal malignancies. Acta Biomater. 2019;83:119-29.

  126. Sandler N, Salmela I, Fallarero A, Rosling A, Khajeheian M, Kolakovic R, Genina N, Nyman J, Vuorela P. Towards fabrication of 3D-printed medical devices to prevent biofilm formation. Int J Pharm. 2014;459(1-2):62-4.

  127. Oblom H, Zhang J, Pimparade M, Speer I, Preis M, Repka M, Sandler N. 3D-printed isoniazid tablets for the treatment and prevention of tuberculosis-personalized dosing and drug release. AAPS PharmSciTech. 2019;20(2):52.

  128. Goy R, Britto D, Assis O. A review of the antimicrobial activity of chitosan. Polimeros. 2009;19(3):241-7.

  129. Niemczyk A, Goszczynska A, Golda CM, Kotarba A, Sobolewski P, El Fray M. Biofunctional catheter coatings based on chitosan-fatty acids derivatives. Carbohydr Polym. 2019;225:115263.

  130. Rubini D, Vedha Hari BN, Nithyanand P. Chitosan coated catheters alleviates mixed species biofilms of Staphylococcus epidermidis and Candida albicans. Carbohydr Polym. 2021;252:117192.

  131. Muthuchamy M, Km S, Thangasamy V, Alharbi N, Thillaichidambaram M, Khaled J, Li WJ. Anti-biofilm investigation of graphene/chitosan nanocomposites against biofilm producing P. aeruginosa and K. pneumoniae. Carbohydr Polym. 2019;230:115646.

  132. Campana R, Biondo F, Mastrotto F, Baffone W, Casettari L. Chitosans as new tools against bio-films formation on the surface of silicone urinary catheters. Int J Biol Macromol. 2018;118(Part B):2193-200.

  133. Al-Belushi MA, Myint MTZ, Kyaw HH, Al-Naamani L, Al-Mamari R, Al-Abri M, Dobretsov S. ZnO nanorod-chitosan composite coatings with enhanced antifouling properties. Int J Biol Macromol. 2020;162:1743-51.

  134. Ejaz S, Ihsan A, Noor T, Shabbir S, Imran M. Mannose functionalized chitosan nanosystems for enhanced antimicrobial activity against multidrug resistant pathogens. Polym Test. 2020;19; 106814.

  135. Maslakci NN, Ulusoy S, Oksuz AU. Investigation of the effects of plasma-treated chitosan electrospun fibers onto biofilm formation. Sens Actuators B: Chem. 2017;246:887-95.

  136. Ogilvie AT, Brisson BA, Singh A, Weese JS. In vitro evaluation of the impact of silver coating on Escherichia coli adherence to urinary catheters. Can Vet J. 2015;56(5):490-4.

  137. Lederer JW, Jarvis WR, Thomas L, Ritter J. Multicenter cohort study to assess the impact of a silver-alloy and hydrogel-coated urinary catheter on symptomatic catheter-associated urinary tract infections. J Wound Ostomy Continence Nurs. 2014;41(5):473-80.

  138. Correa JM, Mori M, Sanches HL, da Cruz AD, Poiate E Jr, Poiate IA. Silver nanoparticles in dental biomaterials. Int J Biomater. 2015;2015:485275.

  139. Yassin M, Elkhooly T, Elsherbiny S, Reicha F, Shokeir A. Facile coating of urinary catheter with bio-inspired antibacterial coating. Heliyon. 2019;5(12):e02986.

  140. Zhang X, Chaimayo W, Yang C, Yao J, Miller B, Yates M. Silver-hydroxyapatite composite coatings with enhanced antimicrobial activities through heat treatment. Surf Coat Technol. 2017;325:39-4.

  141. Zhang S, Wang L, Liang X, Vorstius J, Keatch R, Corner G, Nabi G, Davidson F, Gadd GM, Zhao Q. Enhanced antibacterial and antiadhesive activities of silver-ptfe nanocomposite coating for urinary catheters. ACS Biomater Sci Eng. 2019;5(6):2804-14.

  142. Wang L, Zhang S, Keatch R, Corner G, Nabi G, Murdoch S, Davidson F, Zhao Q. In-vitro antibacterial and anti-encrustation performance of silver-polytetrafluoroethylene nanocomposite coated urinary catheters. J Hosp Infect. 2019;103(1):55-63.

  143. Kubo AL, Capjak I, Vrcek IV, Bondarenko OM, Kurvet I, Vija H, Ivask A, Kasemets K, Kahru A. Antimicrobial potency of differently coated 10 and 50 nm silver nanoparticles against clinically relevant bacteria Escherichia coli and Staphylococcus aureus. Colloids Surf B Biointerfaces. 2018;170:401-10.

  144. Qakir-Koj R, Budama-Kilinc Y, Zorlu T, Ozdemir B, Karavelioglu Z, Egil AC, Kecel-Gunduz S. Assessment of nano-toxicity and safety profiles of silver nanoparticles. In: Maaz K, editor. Silver nanoparticles. IntechOpen; 2018.

  145. Fahmy HM, Mosleh AM, Elghany AA, Shams-Eldin E, Serea ESA, Ali SA, Shalan AS. Coated silver nanoparticles: Synthesis, cytotoxicity, and optical properties. RSC Adv. 2019;9(35):20118-36.

  146. Madla-Cruz E, de la Garza-Ramos M, Romo-Saenz CI, Tamez-Guerra P, Garza-Navarro MA, Urrutia-Baca V, Martinez-Rodriguez MA,Gomez-Flores R. Antimicrobial activity and inhibition of biofilm formation in vitro and on human dentine by silver nanoparticles/carboxymethyl-cellulose composites. Arch Oral Biol. 2020;120:104943.

  147. Sambale F, Wanger S, Stahl F, Khaydarov R, Scheper T, Bahemann D. Investigations of the toxic effect of silver nanoparticles on mammalian cell lines. J Nanomater. 2015:1-9.

  148. Paschke and Lienkamp K. Polyzwitterions: From surface properties and bioactivity profiles to biomedical applications. ACS Appl Polymer Mater. 2020;2(2):129-51.

  149. Vaterrodt A, Thallinger B, Daumann K, Koch D, Guebitz GM, Ulbricht M. Antifouling and antibacterial multifunctional polyzwitterion/enzyme coating on silicone catheter material prepared by electrostatic layer-by-layer assembly. Langmuir. 2016;32(5):1347-59.

  150. Peng W, Liu P, Zhang X, Peng J, Gu Y, Dong X, Ma Z, Liu P, Shen J. Multi-functional zwitterionic coating for silicone-based biomedical devices. Chem Eng J. 2020;398:125663.

  151. Hippius C, Butun V, Erel-Goktepe I. Bacterial anti-adhesive properties of a monolayer of zwitterionic block copolymer micelles. Mater Sci Eng C Mater Biol Appl. 2014;41:354-62.

  152. Liu P, Huang T, Liu P, Shi S, Chen Q, Li L, Shen J. Zwitterionic modification of polyurethane membranes for enhancing the anti-fouling property. J Colloid Interface Sci. 2016;480:91-101.

  153. Garg T, Singh S, Goyal AK. Stimuli-sensitive hydrogels: An excellent carrier for drug and cell delivery. Crit Rev Ther Drug Carrier Syst. 2013;30(5):369-409.

  154. Anjum S, Singh S, Benedicte L, Roger P, Panigrahi M, Gupta B. Biomodification strategies for the development of antimicrobial urinary catheters: Overview and advances. Glob Chall. 2017;2(1): 1700068.

  155. Erathodiyil N, Chan HM, Wu H, Ying JY. Zwitterionic polymers and hydrogels for antibiofouling applications in implantable devices. Mater Today. 2020;38:84-98.

  156. Yong Y, Qiao M, Chiu A, Fuchs S, Liu Q, Pardo Y, Worobo R, Liu Z, Ma M. Conformal hydrogel coatings on catheters to reduce biofouling. Langmuir. 2019;35(5):1927-34.

  157. Li S, Dong S, Xu W, Tu S, Yan L, Zhao C, Ding J, Chen X. Antibacterial hydrogels. Adv Sci. 2018;5(5):1700527.

  158. Wang X, Xu P, Yao Z, Fang Q, Feng L, Guo R, Cheng B. Preparation of antimicrobial hyaluronic acid/quaternized chitosan hydrogels for the promotion of seawater-immersion wound healing. Front Bioeng Biotechnol. 2019;7:360.

  159. Schairer DO, Chouake JS, Nosanchuk JD, Friedman AJ. The potential of nitric oxide releasing therapies as antimicrobial agents. Virulence. 2012;3(3):271-9.

  160. Margel D, Mizrahi M, Regev-Shoshani G, Ko M, Moshe M, Ozalvo R, Shavit-Grievink L, Baniel J, Kedar D, Yossepowitch O, Lifshitz D, Nadu A, Greenberg D, Av-Gay Y. Nitric oxide charged catheters as a potential strategy for prevention of hospital acquired infections. PLoS One. 2017;12(4):e0174443.

  161. Jones GL, Muller CT, O'Reilly M, Stickler DJ. Effect of triclosan on the development of bacterial bio-films by urinary tract pathogens on urinary catheters. J Antimicrob Chemother. 2006;57(2):266-72.

  162. Weatherly LM, Gosse JA. Triclosan exposure, transformation, and human health effects. J Toxicol Environ Health B Crit Rev. 2017;20(8):447-69.

  163. Westfall C, Flores-Mireles AL, Robinson JI, Lynch AJL, Hultgren S, Henderson JP, Levin PA. The widely used antimicrobial triclosan induces high levels of antibiotic tolerance in vitro and reduces antibiotic efficacy up to 100-fold in vivo. Antimicrob Agents Chemother. 2019;63(5):e02312-8.

  164. Crowle AJ, Douvas GS, May MH. Chlorpromazine: A drug potentially useful for treating mycobacterial infections. Chemotherapy. 1992;38(6):410-9.

  165. Sidrim JJ, Amando BR, Gomes FI, do Amaral MS, de Sousa PC, Ocadaque CJ, Brilhante RS, A Cordeiro R, Rocha MF, Scm Castelo-Branco D. Chlorpromazine-impregnated catheters as a potential strategy to control biofilm-associated urinary tract infections. Future Microbiol. 2019;14:1023-34.

  166. Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev. 2010;62(1):3-11.

  167. Sanchez SV, Navarro N, Catalan-Figueroa J, Morales JO. Nanoparticles as potential novel therapies for urinary tract infections. Front Cell Infect Microbiol. 2021;11:656496.

  168. Wang Z, Xia T, Liu S. Mechanisms of nanosilver-induced toxicological effects: More attention should be paid to its sublethal effects. Nanoscale. 2015;7(17):7470-81.

  169. Cheng L, Li Y, Zhai X, Xu B, Cao Z, Liu W. Polycation-b-polyzwitterion copolymer grafted luminescent carbon dots as a multifunctional platform for serum-resistant gene delivery and bioimaging. ACS Appl Mater Interfaces. 2014;6(22):20487-97.

  170. Skandalis A, Sentoukas T, Giaouzi D, Kafetzi M, Pispas S. Latest advances on the synthesis of linear ABC-type triblock terpolymers and star-shaped polymers by RAFT polymerization. Polymers. 2021;13(11):1698.

  171. Xv J, Li H, Zhang W, Lai G, Xue H, Zhao J, Tu M, Zeng R. Anti-biofouling and functionalizable bioinspired chitosan-based hydrogel coating via surface photo-immobilization. J Biomater Sci Polym Ed. 2019;30(5):398-414.

  172. Cascone S, Lamberti G. Hydrogel-based commercial products for biomedical applications: A review. Int J Pharm. 2020;573:118803.

  173. Garg T, Singh O, Arora S, Murthy R. Scaffold: A novel carrier for cell and drug delivery. Crit Rev Ther Drug Carrier Syst. 2012;29(1):1-63.

  174. Privett BJ, Broadnax AD, Bauman SJ, Riccio DA, Schoenfisch MH. Examination of bacterial resistance to exogenous nitric oxide. Nitric Oxide. 2012;26(3):169-73.

  175. Pieretti CJ, Pelegrino MT, Boudier A, Seabra AB. Recent progress in the toxicity of nitric oxidereleasing nanomaterials. Mater Adv. 2021;2:7530-42.

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain