Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rapid cloning of antigen-specific T-cell receptors by leveraging the cis activation of T cells

Abstract

It is commonly understood that T cells are activated via trans interactions between antigen-specific T-cell receptors (TCRs) and antigenic peptides presented on major histocompatibility complex (MHC) molecules on antigen-presenting cells. By analysing a large number of T cells at the single-cell level on a microwell array, we show that T-cell activation can occur via cis interactions (where TCRs on the T cell interact with the antigenic peptides presented on MHC class-I molecules on the same cell), and that such cis activation can be used to detect antigen-specific T cells and clone their TCR within 4 d. We used the detection-and-cloning system to clone a tumour-antigen-specific TCR from peripheral blood mononuclear cells of healthy donors. TCR cloning by leveraging the cis activation of T cells may facilitate the development of TCR-engineered T cells for cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Detection of cytokine-secreting T cells in a microwell-array chip.
Fig. 2: T-cell activation via cis interactions of TCRs and pMHC-I molecules on a single T cell using the microwell-array chip.
Fig. 3: Molecular analysis of T-cell activation through cis and trans interactions with pMHC molecules.
Fig. 4: Interaction of TCR and pMHC molecules in cis or trans.
Fig. 5: A model for the cis interaction between the TCR and the antigenic pMHC-I complex on the lipid-bilayer surface.
Fig. 6: T-cell activation through cis or trans interactions of TCR and pMHC molecules in human cells.
Fig. 7: Development of the T-ISAAC system for human TCR cloning based on the cis activation of T cells.
Fig. 8: Cloning of a WT1-specific TCR from PBMCs of healthy donors with T-ISAAC.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The cDNA sequences of the TCRs are available from the DNA Data Bank of Japan, under the set of accession codes LC663613LC663622. The raw data generated during the study are available for research purposes from the corresponding author on reasonable request.

References

  1. Held, W. & Mariuzza, R. A. Cis interactions of immunoreceptors with MHC and non-MHC ligands. Nat. Rev. Immunol. 8, 269–278 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Garcia, K. C. et al. An αß T cell receptor structure at 2.5 A and its orientation in the TCR-MHC complex. Science 274, 209–219 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Jin, A. et al. A rapid and efficient single-cell manipulation method for screening antigen-specific antibody-secreting cells from human peripheral blood. Nat. Med. 15, 1088–1092 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Tokimitsu, Y. et al. Single lymphocyte analysis with a microwell array chip. Cytometry A 71, 1003–1010 (2007).

    Article  PubMed  CAS  Google Scholar 

  5. Kobayashi, E. et al. A new cloning and expression system yields and validates TCRs from blood lymphocytes of patients with cancer within 10 days. Nat. Med. 19, 1542–1546 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Pang, S. S. et al. The structural basis for autonomous dimerization of the pre-T-cell antigen receptor. Nature 467, 844–848 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Tawara, I. et al. Safety and persistence of WT1-specific T-cell receptor gene-transduced lymphocytes in patients with AML and MDS. Blood 130, 1985–1994 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Chapuis, A. G. et al. T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse post-transplant. Nat. Med. 25, 1064–1072 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rapoport, A. P. et al. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat. Med. 21, 914–921 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Clarke, S. R. et al. Characterization of the ovalbumin-specific TCR transgenic line OT-I: MHC elements for positive and negative selection. Immunol. Cell Biol. 78, 110–117 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Ober, B. T. et al. Affinity of thymic self-peptides for the TCR determines the selection of CD8(+) T lymphocytes in the thymus. Int. Immunol. 12, 1353–1363 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Betts, M. R. et al. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J. Immunol. Methods 281, 65–78 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Zehn, D., Lee, S. Y. & Bevan, M. J. Complete but curtailed T-cell response to very low-affinity antigen. Nature 458, 211–214 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fu, G. et al. Themis sets the signal threshold for positive and negative selection in T-cell development. Nature 504, 441–445 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mareeva, T., Lebedeva, T., Anikeeva, N., Manser, T. & Sykulev, Y. Antibody specific for the peptide.major histocompatibility complex. Is it T cell receptor-like? J. Biol. Chem. 279, 44243–44249 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Linsley, P. S. & Ledbetter, J. A. The role of the CD28 receptor during T cell responses to antigen. Annu. Rev. Immunol. 11, 191–212 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Yang, J. et al. Kupfer-type immunological synapse characteristics do not predict anti-brain tumor cytolytic T-cell function in vivo. Proc. Natl Acad. Sci. USA 107, 4716–4721 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Santos, A. M. et al. Capturing resting T cells: the perils of PLL. Nat. Immunol. 19, 203–205 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Baniyash, M. TCR zeta-chain downregulation: curtailing an excessive inflammatory immune response. Nat. Rev. Immunol. 4, 675–687 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Desombere, I. et al. The interferon gamma secretion assay: a reliable tool to study interferon gamma production at the single cell level. J. Immunol. Methods 286, 167–185 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Hu, Z. et al. A cloning and expression system to probe T-cell receptor specificity and assess functional avidity to neoantigens. Blood 132, 1911–1921 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Aleksic, M. et al. Different affinity windows for virus and cancer-specific T-cell receptors: implications for therapeutic strategies. Eur. J. Immunol. 42, 3174–3179 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cheever, M. A. et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin. Cancer Res. 15, 5323–5337 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tsuboi, A. et al. Enhanced induction of human WT1-specific cytotoxic T lymphocytes with a 9-mer WT1 peptide modified at HLA-A*2402-binding residues. Cancer Immunol. Immunother. 51, 614–620 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Ge, Q. et al. Soluble peptide-MHC monomers cause activation of CD8+ T cells through transfer of the peptide to T cell MHC molecules. Proc. Natl Acad. Sci. USA 99, 13729–13734 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pearse, B. M. Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. Proc. Natl Acad. Sci. USA 73, 1255–1259 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Anderson, R. G. The caveolae membrane system. Annu. Rev. Biochem. 67, 199–225 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Garcia, K. C. et al. Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC antigen. Science 279, 1166–1172 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. von Boehmer, H. et al. Control of T-cell development by the TCR alpha beta for antigen. Cold Spring Harb. Symp. Quant. Biol. 54, 111–118 (1989).

    Article  Google Scholar 

  31. Persaud, S. P., Parker, C. R., Lo, W. L., Weber, K. S. & Allen, P. M. Intrinsic CD4+ T cell sensitivity and response to a pathogen are set and sustained by avidity for thymic and peripheral complexes of self peptide and MHC. Nat. Immunol. 15, 266–274 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lyu, F. et al. A novel and simple method to produce large amounts of recombinant soluble peptide/major histocompatibility complex monomers for analysis of antigen-specific human T cell receptors. N. Biotechnol. 49, 169–177 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Cohen, C. J. et al. Isolation of neoantigen-specific T cells from tumor and peripheral lymphocytes. J. Clin. Invest. 125, 3981–3991 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tran, E. et al. Immunogenicity of somatic mutations in human gastrointestinal cancers. Science 350, 1387–1390 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Freeman, J. D., Warren, R. L., Webb, J. R., Nelson, B. H. & Holt, R. A. Profiling the T-cell receptor beta-chain repertoire by massively parallel sequencing. Genome Res. 19, 1817–1824 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Robins, H. S. et al. Comprehensive assessment of T-cell receptor beta-chain diversity in αβ T cells. Blood 114, 4099–4107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, C. et al. High throughput sequencing reveals a complex pattern of dynamic interrelationships among human T cell subsets. Proc. Natl Acad. Sci. USA 107, 1518–1523 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Linnemann, C. et al. High-throughput identification of antigen-specific TCRs by TCR gene capture. Nat. Med. 19, 1534–1541 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Turchaninova, M. A. et al. Pairing of T-cell receptor chains via emulsion PCR. Eur. J. Immunol. 43, 2507–2515 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Han, A., Glanville, J., Hansmann, L. & Davis, M. M. Linking T-cell receptor sequence to functional phenotype at the single-cell level. Nat. Biotechnol. 32, 684–692 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kondo, T. et al. Notch-mediated conversion of activated T cells into stem cell memory-like T cells for adoptive immunotherapy. Nat. Commun. 8, 15338 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mo, F. et al. An engineered IL-2 partial agonist promotes CD8(+) T cell stemness. Nature 597, 544–548 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Weber, E. W. et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science 372, eaba1786 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ueno, T., Tomiyama, H., Fujiwara, M., Oka, S. & Takiguchi, M. Functionally impaired HIV-specific CD8 T cells show high affinity TCR-ligand interactions. J. Immunol. 173, 5451–5457 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Miyahara, Y. et al. Determination of cellularly processed HLA-A2402-restricted novel CTL epitopes derived from two cancer germ line genes, MAGE-A4 and SAGE. Clin. Cancer Res. 11, 5581–5589 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Hamana, H., Shitaoka, K., Kishi, H., Ozawa, T. & Muraguchi, A. A novel, rapid and efficient method of cloning functional antigen-specific T-cell receptors from single human and mouse T-cells. Biochem. Biophys. Res. Commun. 474, 709–714 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Morita, S., Kojima, T. & Kitamura, T. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther. 7, 1063–1066 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Kinsella, T. M. & Nolan, G. P. Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum. Gene Ther. 7, 1405–1413 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Shitaoka, K. et al. Identification of tumoricidal TCRs from tumor-infiltrating lymphocytes by single-cell analysis. Cancer Immunol. Res. 6, 378–388 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Melanoma-associated antigen (MAGEA4)-specific TCR (2–28) expression vectors were kindly provided by H. Shiku (Mie University). TCR sequence data of Wilms tumour 1 (WT1)-specific TCR (TAK1) were kindly provided by M. Yasukawa (Ehime University), PLAT-E cell line by T. Kitamura (University of Tokyo), human CD8-expressing TG40 cell line by T. Ueno (Kumamoto University) with permission from T. Saito (Riken), T2-A24 cell line by K. Kuzushima (Aichi Cancer Center Research Institute) and Phoenix-A cell line by G. Nolan (Stanford University). We thank T. Katagiri (University of Toyama) for helpful discussion. This research was supported by Practical Research for Innovative Cancer Control, Project for Cancer Research and Therapeutic Evolution (P-CREATE) from AMED under Grant Number JP17cm0106417 (E.K.) and JP20cm0106371 (E.K.), and JSPS KAKENHI grant numbers 18K19441 (H.K.), 16H06499 (H.K.) and 16H06500 (S.Y.), 21K18261 (H.K.), 21H02782 (E.K.) and 21H02966 (A.M.)

Author information

Authors and Affiliations

Authors

Contributions

E.K., H.K. and A.M. proposed the concept of cis interaction of TCR with pMHC molecules and of the T-ISAAC system. E.K., H.K. and A.J. designed the research studies. H.H. produced DNA constructs. T. Obata produced microwell-array chips. E.K., H.K., A.J., H.H., K.S., K.T. and T. Ozawa performed the research and analysed the data. S.K. and S.Y. built the structure model. A.J., H.K., E.K and A.M. discussed the results and implications. E.K., H.K. and A.M. wrote the paper. All authors read and reviewed the manuscript.

Corresponding author

Correspondence to Hiroyuki Kishi.

Ethics declarations

Competing interests

H.K and A.M. are directors of SC World, Inc. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures, tables and methods.

Reporting Summary

Peer Review File

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, E., Jin, A., Hamana, H. et al. Rapid cloning of antigen-specific T-cell receptors by leveraging the cis activation of T cells. Nat. Biomed. Eng 6, 806–818 (2022). https://doi.org/10.1038/s41551-022-00874-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-022-00874-6

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research