Skip to main content

Advertisement

Log in

Phylogenetic network analysis of South and North American Corynespora cassiicola isolates from tomato, cucumber, and novel hosts

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Corynespora cassiicola isolates display morphological, pathogenic, and ecological diversity, inducing target spot-like diseases in more than 500 hosts worldwide, including tomato and cucumber. Nevertheless, there is a scarce number of studies about the genetic variability of Corynespora isolates in the New World. Here, we characterized a collection of 58 Corynespora isolates from tomatoes and distinct hosts in Brazil and Florida (USA). All isolates were identified as C. cassiicola according to the sequencing information of the internal transcribed spacer (ITS) region of 18S–28S nuclear ribosomal DNA as well as the translation elongation factor 1-alpha (tef-1α) and β-tubulin (tub2) genes. However, intraspecific resolution was observed in phylogenetic analyses according to the geographical and host origin of the isolates. The β-tubulin (tub2) haplotype network was in agreement with phylogenetic analyses, revealing a polyphyletic structure with three well-defined phylogenetic lineages. The concatenated trees (encompassing all three genomic regions) showed superior intraspecific resolution than the individual phylogenetic trees. Thirteen selected C. cassiicola isolates (representing all three phylogenetic lineages) displayed variability in colony morphology (color, texture, growth rate, and shape) and in conidial morphometrics. Three selected C. cassiicola isolates confirmed their pathogenicity to the original hosts and to other plant species. Novel natural and experimental host-pathogen interactions were identified, including cabbage, Commelina benghalensis, eggplant, Eruca sativa, Hibiscus sabdariffa, and melon. The diversity of C. cassiicola isolates indicates that these phylogenetic lineages may represent a complex of closely related species with distinct patterns of host and cultivar-specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. Sequences were deposited in GenBank and alignments were deposited in TreeBASE (Study ID:29201).

References

  • Bakhshi, M., Arzanlou, M., Babai-Ahari, A., Groenewald, J. Z., Braun, U., & Crous, P. W. (2015). Application of the consolidated species concept to Cercospora spp. from Iran. Persoonia, 34, 65–86.

    Article  CAS  Google Scholar 

  • Banguela-Castillo, A., Ramos-González, P. L., Peña-Marey, M., Godoy, C. V., & Harakava, R. (2020). An updated phylogenetic classification of Corynespora cassiicola isolates and a practical approach to their identification based on the nucleotide polymorphisms at the ga4 and caa5 loci. Mycologia, 112, 24–38. https://doi.org/10.1080/00275514.2019.1670018

    Article  CAS  PubMed  Google Scholar 

  • Boiteux, L.S., Fonseca, M.E.N., Simon, P.W. (1999). Effects of plant tissue and DNA purification method on RAPD-based genetic fingerprinting analysis in carrot. Journal of the American Society for Horticultural Science, 124, 32–38.

  • Boosalis, M. G., & Hamilton, R. I. (1957). Root and stem rot of soybean caused by Corynespora cassiicola. Plant Disease Rep., 41, 696–698.

    Google Scholar 

  • Carbone, I., & Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91, 553–556.

    Article  CAS  Google Scholar 

  • Carris, L. M., & Glawe, D. A. (1986). Isolation of the soybean pathogens Corynespora cassiicola and Phialophora gregata from cysts of Heterodera glycines in Illinois. Mycologia, 78, 503–506.

    Article  Google Scholar 

  • Castellani, A. (1939). Viability of some pathogenic fungi in distilled water. Journal of Tropical Medicine & Hygiene, 24, 270–276.

    Google Scholar 

  • Castresana, J. (2000). Selection of conserved blocks from multiple align- ments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17, 540–552.

    Article  CAS  Google Scholar 

  • Chase, A. R. (1993). Corynespora leaf spot and stem rot of salvias. CFREC-Apopka res. Rep. RH-93-12.

  • Chomcheon, P., Wiy Akrutt, A. S., Sriubolmas, N., Ngamrojanavanich, N., Kengtong, S., Mahidol, C., Ruchirawat, S., & Kittakoop, P. (2009). Aromatase inhibitory, radical scavenging, and antioxidant activities of depsidones and diaryl ethers from the endophytic fungus Corynespora cassiicola L36. Phytochemistry, 70, 407–413.

    Article  CAS  Google Scholar 

  • Clement, M., Posada, D., & Crandall, K. (2000). TCS: A computer program to estimate gene genealogies. Molecular Ecology, 9, 1657–1659.

    Article  CAS  Google Scholar 

  • Clement, M., Snell, Q., Walker, P., Posada, D., & Crandall, K. (2002). TCS: Estimating gene genealogies. Parallel and distributed processing symposium, international proceedings. 2, 184.

  • Crouch, J. A., Clarke, B. B., & Hillman, B. I. (2009). What is the value of ITS sequence data in Colletotrichum systematics and species diagnosis? A case study using the falcate-spored, graminicolous Colletotrichum group. Mycologia, 101, 648–656.

    Article  Google Scholar 

  • Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A plant DNA minipreparation: Version II. Plant Mol Biol Rep, 1, 19–21.

    Article  CAS  Google Scholar 

  • Déon, M., Fumanal, B., Gimenez, S., Bieysse, D., Oliveira, R. R., Shuib, S. S., Breton, F., Elumalai, S., Vida, J. B., Seguin, M., Leroy, T., Roeckel Drevet, P., & Pujade Renaud, V. (2014). Diversity of the cassiicolin gene in Corynespora cassiicola and relation with the pathogenicity in Hevea brasiliensis. Fungal Biology, 118, 32–47.

    Article  Google Scholar 

  • Dixon, L. J., Schlub, R. L., Pernezny, K., & Datnoff, L. E. (2009). Host specialization and phylogenetic diversity of Corynespora cassiicola. Phytopathology, 99, 1015–1027.

    Article  CAS  Google Scholar 

  • Farr, D. F., & Rossman, A. Y. (2021). Fungal databases, systematic mycology and microbiology laboratory, ARS, USDA. Retrieved April 20, 2021, from http://nt.ars-grin.gov/fungaldatabases/new_allView.cfm?whichone=FungusHost&thisName=Corynespora%20cassiicola&organismtype=Fungus&fromAllCount=yes.

  • Ferreira, D. F. (2011). Sisvar: A computer statistical analysis system. Ciência e Agrotecnologia (UFLA), 35, 1039–1042.

    Article  Google Scholar 

  • Glass, N. L., & Donaldson, G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61, 1323–1330.

    Article  CAS  Google Scholar 

  • Ismail, H., & Jeyanayagi, I. (1999). Occurrence and identification of physiological races of Corynespora cassiicola of Hevea. In ‘proceedings of the IRRDB symposium 1999’. (Eds QB Chen, JN Zhou). 263-272.

  • Kajiwara, T. H., Soldera, M. C. A., Urquiza, G. P. C., Vieira, N. D., & Almeida, A. M. R. (2009). Diversidade genética de isolados de Corynespora cassiicola (Berk. & Curt.) Wei, por RAPD e PCR-RFLP. Jornada acadêmica da Embrapa Soja, Londrina. Resumos. Embrapa Soja, 4, 103–106.

    Google Scholar 

  • Katoh, K. and Standley, D.M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780.

  • Kingsland, G., & Sitterly, R. (1986). Studies on fungicides for control of Corynespora cassiicola leaf spot of tomatoes in the Republic of Seychelles. Microbiology Abstract Section C, 15, 94.

    Google Scholar 

  • Kodsueb, R., Mckenzie, E. H. C., Lumyong, S., & Hyde, K. D. (2008). Diversity of saprobic fungi on Magnoliaceae. Fungal Diversity, 30, 37–53.

    Google Scholar 

  • Lamotte, F. (2007). Purification and characterization of cassicolin, the toxin produced by Corynespora cassiicola, causal agent of the fall disease of rubber tree. Journal of Chromatography B, 849, 357–362.

    Article  Google Scholar 

  • Lee, S., Melnik, V., Taylor, J. E., & Crous, P. W. (2004). Diversity of saprobic hyphomycetes on Proteaceae and Restionaceae from South Africa. Fungal Diversity, 17, 91–114.

    Google Scholar 

  • Leigh, J. W., & Bryant, D. (2015). POPART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6, 1110–1116.

    Article  Google Scholar 

  • Librado, P., & Rozas, J. (2009). DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451–1452. https://doi.org/10.1093/bioinformatics/btp187

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie, K. J., Sumabat, L. G., Xavier, K. V., & Vallad, G. E. (2018). A Review of Corynespora cassiicola and its increasing relevance to tomato in Florida. Plant Health Progress, 19, 303–309.

    Article  Google Scholar 

  • Mendes, M. A. S., Urben, A. F., & Dianese, J. C. (2019). Fungos em Plantas no Brasil. In 2ª Edição. Embrapa.

    Google Scholar 

  • Menezes, M., & Silva-Hanlin, D. M. W. (1997). Guia Prático Para Fungos Fitopatogênicos. Imprensa Universitária. UFRPE. Recife., 106.

  • Nghia, N. A., Kadir, J., Sunderasan, E., Abdullah, M. P., Malik, A., & Napis, S. (2008). Morphological and inter simple sequence repeat (ISSR) markers analyses of Corynespora cassiicola isolates from rubber plantations in Malaysia. Mycopathologia, 166, 189–201.

    Article  CAS  Google Scholar 

  • Oliveira, R. R., Vida, J. B., Tessmann, D. J., Aguiar, B. M., Caixeta, M. P., & Barboza, A. L. (2007). Patogenicidade de isolados de Corynespora cassiicola a diferentes espécies de plantas. Summa Phytopathologica, 33, 297–299.

    Article  Google Scholar 

  • Onesirosan, P. T., Arny, D. C., & Durbin, R. D. (1974). Host specificity of Nigerian and north American isolates of Corynespora cassiicola. Phytopathology, 64, 1364–1367.

    Article  Google Scholar 

  • Pereira, J. M., Barreto, R. W., Ellison, C. A., & Maffia, L. A. (2003). Corynespora cassiicola f. sp. Lantanae: A potential biocontrol agent from Brazil for Lantana camara. Biological Control, 26, 21–31.

    Article  Google Scholar 

  • Qi, Y. X., Zhang, X., Pu, J. J., Liu, X. M., Lu, Y., Zhang, H. Q., & Xie, Y. X. (2011). Morphological and molecular analysis of genetic variability within isolates of Corynespora cassiicola from different hosts. European Journal of Plant Pathology, 130, 83–95. https://doi.org/10.1007/s10658-010-9734-6

    Article  Google Scholar 

  • Raffel, S. J., Kazmar, E. R., Winberg, R., Oplinger, E. S., Handelsman, J., Goodman, R. M., & Grau, C. R. (1999). First report of root rot of soybeans caused by Corynespora cassiicola in Wisconsin. Plant Disease, 83, 696.

    Article  CAS  Google Scholar 

  • Rambaut, A. (2012). FigTree v1.4.0: Tree figure drawing tool. Retrieved March 15, 2020, from http://tree.bio.ed.ac.uk/software/figtree.

  • Rambaut, A., & Drummond, A. (2010). Tracer v. 1.4. Retrieved March 15, 2020, from http://beast.bio.ed.ac.uk/Tracer.

  • Reis, A., & Boiteux, L. S. (2007). Mancha-de-corinéspora do tomateiro. Embrapa Hortaliças. Brasília-DF: Comunicado Técnico.

  • Romruensukharom, P., Tragoonrung, S., Vanavichit, A., & Toojinda, T. (2005). Genetic variability of Corynespora cassiicola population in Thailand. Journal of Rubber Research, 8, 38–49.

    Google Scholar 

  • Ronquist, F., Klopfstein, S., Vilhelmsen, L., Schulmeister, S., Murray, D. L., & Rasnitsyn, A. P. (2012). A total-evidence approach to dating with fossils, applied to the early radiation of the hymenoptera. Systematic Biology, 61(6), 973–999. https://doi.org/10.1093/sysbio/sys058

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimomoto, Y., Sato, T., Hojo, H., Morita, Y., Takeuchi, S., Mizumoto, H., Kiba, A., & Hikichi, Y. (2011). Pathogenic and genetic variation among isolates of Corynespora cassiicola in Japan. Plant Pathology, 60, 253–260.

    Article  CAS  Google Scholar 

  • Shrestha, S. K., Lamour, K., & Young-Kelly, H. (2017). Genome sequences and SNP analyses of Corynespora cassiicola from cotton and soybean in the southeastern United States reveal limited diversity. PLoS One, 12(9), e0184908. https://doi.org/10.1371/journal.pone.0184908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva, W. P. K., Deverall, B. J., & Lyon, B. R. (1998). Molecular, physiological and pathogenic characterization of Corynespora cassiicola leaf spot fungi from rubber plantations in Sri Lanka. Plant Pathology, 47, 267–277.

    Article  CAS  Google Scholar 

  • Sousa, F. M. G., & Bentes, J. L. S. (2014). Variabilidade de isolados de Corynespora cassiicola (Berk. & Curt.) Wei procedentes do Amazonas, em meios de cultura. Summa Phytopathologica, 40, 84–87.

    Article  Google Scholar 

  • Staden, R., Beal, K. F., & Bonfield, J. K. (1998). The Staden package. In S. A. Krawetz (Ed.), Misener S (pp. 115–130). Humana.

    Google Scholar 

  • Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of 597 large phylogenies. Bioinformatics, 30(9), 1312–1313.

    Article  CAS  Google Scholar 

  • Sumabat, L., Kemerait, R. C., & Brewer, M. T. (2018a). Phylogenetic diversity and host specialization of Corynespora cassiicola responsible for emerging target spot disease of cotton and other crops in the southeastern United States. Phytopathology, 108(7), 892–901.

    Article  Google Scholar 

  • Sumabat, L. G., Kemerait Jr., R. C., Kim, D. K., Mehta, Y. R., & Brewer, M. T. (2018b). Clonality and geographic structure of host-specialized populations of Corynespora cassiicola causing emerging target spot epidemics in the southeastern United States. PLoS One, 13(10), e0205849. https://doi.org/10.1371/journal.pone.0205849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallad, G. E., & Burlacu, V. (2011). Initial characterization of Corynespora cassiicola and Alternaria spp. affecting Florida tomatoes: Fungicide resistance, pathogen variability, and host resistance. Retrieved March 15, 2020, from http://swfrec.ifas.ufl.edu/docs/pdf/veg-hort/tomatoinstitute/proceedings/ti11_proceedings.pdf.

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). Academic Press.

    Google Scholar 

  • Xie, Z., Wu, W., Meng, D., Zhang, Q., Ma, Y., & Chen, J. (2018). A case of Phaeohyphomycosis caused by Corynespora cassiicola infection. BMC Infectious Diseases, 18, 444.

    Article  Google Scholar 

  • Yamada, H., Takahashi, N., Hori, N., Asano, Y., Mochizuki, K., Ohkusu, K., & Nishimura, K. (2013). Rare case of fungal keratitis caused by Corynespora cassiicola. Journal of Infection and Chemotherapy, 19, 1167–1169.

    Article  Google Scholar 

  • Yan, X. X., Yu, C. P., Fu, X. A., Bao, F. F., Du, D. H., Wang, C., Wang, N., Wang, S. F., Shi, Z. X., Zhou, G. Z., Tian, H. Q., Liu, H., & Zhang, F. R. (2016). CARD9 mutation linked to Corynespora cassiicola infection in a Chinese patient. British Journal of Dermatology, 174, 176–179.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The first author is grateful to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) for a doctorate scholarship. Ailton Reis, Leonardo S. Boiteux and Maria Esther de N. Fonseca thank CNPq for their research scholarship. This study was also financed in part by the CAPES, Brazil – Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Reis.

Ethics declarations

Research involving human participants and/or animals

Not applicable.

Informed consent

All authors have reviewed the manuscript and approved its submission to the European Journal of Plant Pathology.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

ESM 1

(DOCX 996 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguiar, F.M., Vallad, G.E., Timilsina, S. et al. Phylogenetic network analysis of South and North American Corynespora cassiicola isolates from tomato, cucumber, and novel hosts. Eur J Plant Pathol 163, 657–671 (2022). https://doi.org/10.1007/s10658-022-02505-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-022-02505-x

Keywords

Navigation