Skip to main content
Log in

A general scheme for solving a large set of scheduling problems with rejection in FPT time

  • Published:
Journal of Scheduling Aims and scope Submit manuscript

Abstract

Mnich and Wiese (Math Program 154:533–562, 2015) proved that the \(\mathcal {NP}\)-hard single-machine scheduling problem with rejection and the total weighted completion time plus total rejection cost as objective is fixed parameter tractable with respect to the number of different processing times and weights in the instance. This result is obtained by reducing the problem to an integer convex programming problem where the number of variables depends solely on the parameter (number of different processing times and weights). We show that this method can be incorporated into a more general scheme for solving a large set of scheduling problems with rejection which share common properties. These problems include various different machine environments, namely single machine, identical machines in parallel, and flow-shops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bagchi, U. B. (1989). Simultaneous minimization of mean and variation of flow-time and waiting time in single-machine systems. Operations Research, 37, 118–125.

    Article  Google Scholar 

  • Bodlaender, H. L., & Fellows, M. R. (1995). \(W[2]\)-hardness of precedence constrained \(k\)-processor scheduling. Operations Research Letters, 18(2), 93–97.

    Article  Google Scholar 

  • Cao, Z., Wang, Z., Zhang, Y., & Liu, S. (2006). On several scheduling problems with rejection or discretely compressible processing times. Lecture Notes in Computer Science, 3959, 90–98.

    Article  Google Scholar 

  • Cesaret, B., Oğuz, C., & Salman, F. S. (2012). A Tabu search algorithm for order acceptance and scheduling. Computers and Operations Research, 39(6), 1197–1205.

    Article  Google Scholar 

  • Choi, B. C., & Chung, J. (2011). Two-machine flow shop scheduling problem with an outsourcing option. European Journal of Operational Research, 213, 66–72.

    Article  Google Scholar 

  • de Weerdt, M., Baart, R., & He, L. (2021). Single-machine scheduling with release times, deadlines, setup times, and rejection. European Journal of Operational Research, 291, 629–639.

    Article  Google Scholar 

  • De, P., Ghosh, J. B., & Wells, C. E. (1991). Optimal delivery time quotation and order sequencing. Decision Sciences, 22(2), 379–390.

    Article  Google Scholar 

  • Downey, R. G., & Fellows, M. R. (2013). Fundamentals of parameterized complexity (Vol. 4). London: Springer.

  • Engels, D., Karger, W., Kolliopoulos, D. R., Sengupta, S. G., Uma, R. N., & Wein, J. (2003). Techniques for scheduling with rejection. Journal of Algorithms, 49(1), 175–191.

    Article  Google Scholar 

  • Fellows, M. R., & McCartin, C. (2003). On the parametric complexity of schedules to minimize tardy tasks. Theoretical Computer Science, 298(2), 317–324.

    Article  Google Scholar 

  • Frank, A., & Tardos, E. (1987). An application of simultaneous diophantine approximation in combinatorial optimization. Combinatorica, 1(7), 49–66.

    Article  Google Scholar 

  • Gavenc̆iak, T., Knop, D., & Koutecký, M. (2018). Integer programming in parameterized complexity: Three miniatures. In 13th International Symposium on Parameterized and Exact Computation (IPEC), Helsinki, Finland, August 20–24, pp. 1–16.

  • Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1979). Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 94, 361–374.

    Google Scholar 

  • Heinz, S. (2005). Complexity of integer Quasiconvex polynomial optimization. Journal of Complexity, 4(21), 543–556.

    Article  Google Scholar 

  • Hejazi, S. R., & Saghafian, S. (2005). Flowshop-scheduling problems with Makespan criterion: A review. International Journal of Production Research, 43(14), 2895–2929.

    Article  Google Scholar 

  • Hermelin, D., Karhi, S., Pinedo, M., & Shabtay, D. (2021). New algorithms for minimizing the weighted number of tardy jobs on a single machine. Annals of Operations Research, 298, 271–287.

    Article  Google Scholar 

  • Hermelin, D., Kubitza, J. M., Shabtay, D., Talmon, N., & Woeginger, G. J. (2019). Scheduling two agents on a single machine: A parameterized analysis of NP-hard problems. Omega, 83, 275–286.

    Article  Google Scholar 

  • Hermelin, D., Manoussakis, G., Pinedo, M., Shabtay, D., & Yedidsion, L. (2020). Parameterized multi-scenario single-machine scheduling problems. Algorithmica, 82, 2644–2667.

    Article  Google Scholar 

  • Hermelin, D., Pinedo, M., Shabtay, D., & Talmon, N. (2019). On the parameterized tractability of single machine scheduling with rejection. European Journal of Operational Research, 273(1), 67–73.

    Article  Google Scholar 

  • Hermelin, D., Shabtay, D., & Talmon, N. (2019). On the parameterized tractability of the just-in-time flow-shop scheduling problem. Journal of Scheduling, 22, 663–676.

    Article  Google Scholar 

  • Hildebrand, R., & Köppe, M. (2013). A new Lenstra-type algorithm for Quasiconvex polynomial integer minimization with complexity \(2^{O(nlogn)}\). Discrete Optimization, 1(10), 69–84.

    Article  Google Scholar 

  • Jackson, J. R. (1955). Scheduling a production line to minimize maximum tardiness. Management Sciences Research Project, UCLA.

  • Jansen, K., Maack, M., & Solis-Oba, R. (2020). Structural parameters for scheduling with assignment restrictions. Theoretical Computer Science, 844, 154–170.

    Article  Google Scholar 

  • Johnson, S. M. (1954). Optimal two- and three-stage production schedules with setup times included. Naval Research Logistics Quarterly, 1, 61–80.

    Article  Google Scholar 

  • Knop, D., & Koutecký, M. (2018). Scheduling meets n-fold integer programming. Journal of Scheduling, 21, 493–503.

    Article  Google Scholar 

  • Kordon, A. M. (2021). A fixed-parameter algorithm for scheduling unit dependent tasks on parallel machines with time windows. Discrete Applied Mathematics, 290, 1–6.

    Article  Google Scholar 

  • Lenstra, H. W. (1983). Integer programming with a fixed number of variables. Mathematics of Operations Research, 8(4), 538–548.

  • Mnich, M., & van Bevern, R. (2018). Parameterized complexity of machine scheduling: 15 open problems. Computers & Operations Research, 100, 254–261.

    Article  Google Scholar 

  • Mnich, M., & Wiese, A. (2015). Scheduling and fixed-parameter tractability. Mathematical Programming, 154, 533–562.

    Article  Google Scholar 

  • Niedermeier, R. (2006). Invitation to fixed-parameter algorithms. Oxford lecture series in mathematics and its applications. Oxford: Oxford Univerity Press.

    Google Scholar 

  • Panwalkar, S. S., Smith, M. L., & Seidmann, A. (1982). Common due date assignment to minimize total penalty for the one machine scheduling problem. Operartions Research, 30, 391–399.

    Article  Google Scholar 

  • Pinedo, M. (2008). Scheduling: Theory, algorithms and systems (3rd ed.). Prentice-Hall: New Jersey.

    Google Scholar 

  • Sengupta, S. (2003). Algorithms and approximation schemes for minimum lateness/tardiness scheduling with rejection. Lecture Notes in Computer Science, 2748, 79–90.

    Article  Google Scholar 

  • Shabtay, D., & Gaspar, N. (2012). Two-machine flow-shop with rejection. Computers and Operations Research, 39(5), 1087–1096.

    Article  Google Scholar 

  • Shabtay, D., Gaspar, N., & Kaspi, M. (2013). A survey on scheduling problems with rejection. Journal of Scheduling, 16(1), 3–28.

    Article  Google Scholar 

  • Shabtay, D., Gasper, N., & Yedidsion, L. (2012). A bicriteria approach to scheduling a single machine with job rejection and positional penalties. Journal of Combinatorial Optimization, 23(4), 39–47.

    Article  Google Scholar 

  • Shabtay, D., & Oron, D. (2016). Proportionate flow-shop scheduling with rejection. Journal of the Operational Research Society, 67(5), 752–769.

    Article  Google Scholar 

  • Shakhlevich, N., Hoogeveen, J. A., & Pinedo, M. (1998). Minimizing total weighted completion time in a proportionate flow shop. Journal of Scheduling, 13, 157–168.

  • Smith, W. E. (1956). Various optimizers for single-stage production. Naval Research Logistics Quarterly, 3, 59–66.

    Article  Google Scholar 

  • van Bevern, R., Bredereck, R., Bulteau, L., Komusiewicz, C., Talmon, N., & Woeginger, G. J. (2016). Precedence-constrained scheduling problems parameterized by partial order width. In Proceedings of the international conference on discrete optimization and operations research (pp. 105–120).

  • van Bevern, R., Mnich, M., Niedermeier, R., & Weller, M. (2015). Interval scheduling and colorful independent sets. Journal of Scheduling, 18(5), 449–469.

    Article  Google Scholar 

  • van Bevern, R., Niedermeier, R., & Such, O. (2017). A parameterized complexity view on non-preemptively scheduling interval-constrained jobs: Few machines, small looseness, and small slack. Journal of Scheduling, 20(3), 255–265.

    Article  Google Scholar 

  • Zhang, L. Q., Lu, L. F., & Li, S. S. (2016). New results on two-machine flow-shop scheduling with rejection. Journal of Combinatorial Optimization, 31, 1493-1504.

    Article  Google Scholar 

  • Zhang, L., Lu, L., & Yuan, J. (2010). Single-machine scheduling under the job rejection constraint. Theoretical Computer Science, 411, 1877–1882.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Grant No. 2016049 from the United States-Israel Binational Science Foundation (BSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dvir Shabtay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by Grant 2016049 of the United States-Israel Binational Science Foundation (BSF).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hermelin, D., Shabtay, D., Zelig, C. et al. A general scheme for solving a large set of scheduling problems with rejection in FPT time. J Sched 25, 229–255 (2022). https://doi.org/10.1007/s10951-022-00731-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10951-022-00731-z

Keywords

Navigation