Skip to main content
Log in

Variation of trace elements in chalcopyrite from worldwide Ni-Cu sulfide and Reef-type PGE deposits: implications for mineral exploration

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Chalcopyrite from 13 worldwide representative Ni-Cu sulfide and Reef-type PGE deposits were investigated using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to evaluate its potential as an indicator mineral for exploration. Trace element data were investigated with PLS-DA (partial least square-discriminant analysis) which, combined with discriminant binary diagrams, allows identification of geochemical criteria for discrimination of deposit type (Ni-Cu sulfide vs. Reef-type PGE) and ore type (Cu-rich vs. Fe-rich). A first PLS-DA model (using Bi, In, Se Sn and Te ) discriminates chalcopyrite by deposit type; those from Reef-type PGE have higher Se relative to Ni-Cu sulfide deposits, as a result of higher R factors, whereas chalcopyrite from Ni-Cu sulfide deposits is higher in Te, Bi and Sb. Platinum Group Mineral (PGM) crystallization in Reef-type PGE deposits typically deplete Te, Bi and Sb in co-existing chalcopyrite, enhancing the differences between these two deposit types. The second PLS-DA model (based on Sb, Se, Sn, Tl and Zn) discriminates by ore type, showing that chalcopyrite from Cu-rich samples is enriched in Sn, Se and Zn relative to Fe-rich/unzoned samples, mainly as a result of sulfide fractionation. Complementary discriminant diagrams Se/(Te+Bi) vs. Se and 2Zn/(3Se+5Sn) vs. Se are proposed to discriminate chalcopyrite by deposit type and ore type, respectively. This study demonstrates that the trace element composition of chalcopyrite enables its use as an indicator mineral for exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agangi A, Reddy SM, Plavsa D, Vieru C, Selvaraja V, LaFlamme C, Jeon H, Martin L, Nozaki T, Takaya Y, Suzuki K (2018) Subsurface deposition of Cu-rich massive sulphide underneath a Palaeoproterozoic seafloor hydrothermal system—the Red Bore prospect, Western Australia. Mineralium Deposita 53:1061-1078. https://doi.org/10.1007/s00126-017-0790-0

  • Aitchison J (1986) The statistical analysis of compositional data. Chapman and Hall, London

    Book  Google Scholar 

  • Antweiler RC (2015) Evaluation of Statistical Treatments of Left-Censored Environmental Data Using Coincident Uncensored Data Sets. II. Group Comparisons. Environ Sci Technol 49:13439–13446. https://doi.org/10.1021/acs.est.5b02385

    Article  Google Scholar 

  • Averill SA (2011) Viable indicator minerals in surficial sediments for two major base metal deposit types: Ni-Cu-PGE and porphyry Cu. Geochemistry: Exploration, Environment, Analysis 11:279-291.

  • Bajwah ZU, Seccombe PK, Offler R (1987) Trace element distribution Co: Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia. Mineral Deposita 22:292–300

    Article  Google Scholar 

  • Balch SJ (2005) The geophysical signatures of platinum group element deposits In: Mungall JE (ed) Exploration for platinum-group element deposits: Mineralogical Association of Canada, Short-Course Series, Volume 35. pp 275-286.

  • Ballabio D, Consonni V (2013) Classification tools in chemistry. Part 1: linear models. PLS-DA. Anal Methods 5:3790–3798

    Article  Google Scholar 

  • Barnes S-J, Melezhik VA, Sokolov SV (2001) The composition and mode of formation of the Pechenga nickel deposits, Kola Peninsula, northwestern Russia. Can Mineral 39:447–471

    Article  Google Scholar 

  • Barnes S-J, Lightfoot PC (2005) Formation of magmatic nickel sulfide ore deposits and processes affecting their copper and platinum group element contents. Economic geology 100th anniversary volume 34:179-214.

  • Barnes S-J, Cox RA, Zientek ML (2006) Platinum-group element, gold, silver and base metal distribution in compositionally zoned sulfide droplets from the Medvezky Creek Mine, Noril’sk, Russia. Contrib Mineral Petrol 152:187–200

    Article  Google Scholar 

  • Barnes S-J, Prichard HM, Cox RA, Fisher PC, Godel B (2008) The location of the chalcophile and siderophile elements in platinum-group element ore deposits (a textural, microbeam and whole rock geochemical study): Implications for the formation of the deposits. Chem Geol 248:295–317

    Article  Google Scholar 

  • Barnes S-J (2016) Chalcophile elements Encyclopedia of Geochemistry: A Comprehensive Reference Source on the Chemistry of the Earth. Springer International Publishing, pp 1-5

  • Barnes S-J, Ripley EM (2016) Highly siderophile and strongly chalcophile elements in magmatic ore deposits. Rev Mineral Geochem 81:725–774

    Article  Google Scholar 

  • Barnes SJ, Mungall JE, Le Vaillant M, Godel B, Lesher CM, Holwell D, Lightfoot PC, Krivolutskaya N, Wei B (2017) Sulfide-silicate textures in magmatic Ni-Cu-PGE sulfide ore deposits: Disseminated and net-textured ores. Am Mineral 102:473–506

    Article  Google Scholar 

  • Barnes SJ, Staude S, Le Vaillant M, Piña R, Lightfoot PC (2018) Sulfide-silicate textures in magmatic Ni-Cu-PGE sulfide ore deposits: Massive, semi-massive and sulfide-matrix breccia ores. Ore Geol Rev 101:629–651. https://doi.org/10.1016/j.oregeorev.2018.08.011

    Article  Google Scholar 

  • Barnes SJ, Taranovic V, Schoneveld LE, Mansur ET, Le Vaillant M, Dare S, Staude S, Evans NJ, Blanks D (2020) The Occurrence and Origin of Pentlandite-Chalcopyrite-Pyrrhotite Loop Textures in Magmatic Ni-Cu Sulfide Ores. Econ Geol 115:1777–1798. https://doi.org/10.5382/econgeo.4757

    Article  Google Scholar 

  • Bédard É, Goulet A, Sappin A-A, Makvandi S, Beaudoin G (2017) Chalcopyrite as an indicator mineral to fingerprint mineral deposit types: a preliminary study Mineral Resources to Discover- Proceedings of the 14th SGA Biennial Meeting. Québec City, Canada, pp 1115-1118.

  • Bédard JH (2005) Partitioning coefficients between olivine and silicate melts. Lithos 83:394–419. https://doi.org/10.1016/j.lithos.2005.03.011

    Article  Google Scholar 

  • Belissont R (2016) Germanium and related elements in sulphide minerals: crystal chemistry, incorporation and isotope fractionation (Doctoral dissertation, Université de Lorraine, France). Available from INIS: http://inis.iaea.org/search/search.aspx?orig_q=RN:51079040

  • Belissont R, Munoz M, Boiron M-C, Luais B, Mathon O (2019) Germanium crystal chemistry in Cu-bearing sulfides from micro-XRF mapping and micro-XANES spectroscopy. Minerals 9:227

    Article  Google Scholar 

  • Benson EK, Ripley EM, Li C, Underwood BW, Mahin R (2020) Multiple S Isotopes and S Isotope Heterogeneity at the East Eagle Ni-Cu-Platinum Group Element Deposit, Northern Michigan. Econ Geol 115:527–541

    Article  Google Scholar 

  • Boutroy E, Dare SA, Beaudoin G, Barnes S-J, Lightfoot PC (2014) Magnetite composition in Ni-Cu-PGE deposits worldwide: application to mineral exploration. J Geochem Explor 145:64–81

    Article  Google Scholar 

  • Brereton RG, Lloyd GR (2014) Partial least squares discriminant analysis: taking the magic away. J Chemometr 28:213–225

    Article  Google Scholar 

  • Brügmann G, Hanski E, Naldrett A, Smolkin V (2000) Sulphide segregation in ferropicrites from the Pechenga Complex, Kola peninsula, Russia. J Petrol 41:1721–1742

    Article  Google Scholar 

  • Butler IB, Nesbitt RW (1999) Trace element distributions in the chalcopyrite wall of a black smoker chimney: insights from laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS). Earth Planet Sci Lett 167:335–345

    Article  Google Scholar 

  • Cabri LJ, Campbell JL, Laflamme JHG, Leigh RG, Maxwell JA, Scott JD (1985) Proton-microprobe analysis of trace elements in sulfides from some massive-sulfide deposits. Can Mineral 23:133–148

    Google Scholar 

  • Cafagna F, Jugo PJ (2016) An experimental study on the geochemical behavior of highly siderophile elements (HSE) and metalloids (As, Se, Sb, Te, Bi) in a mss-iss-pyrite system at 650°C: A possible magmatic origin for Co-HSE-bearing pyrite and the role of metalloid-rich phases in the fractionation of HSE. Geochim Cosmochim Acta 178:233–258. https://doi.org/10.1016/j.gca.2015.12.035

    Article  Google Scholar 

  • Chen L-M, Song X-Y, Danyushevsky LV, Wang Y-S, Tian Y-L, Xiao J-F (2015) A laser ablation ICP-MS study of platinum-group and chalcophile elements in base metal sulfide minerals of the Jinchuan Ni–Cu sulfide deposit, NW China. Ore Geol Rev 65:955–967

    Article  Google Scholar 

  • Chong I-G, Jun C-H (2005) Performance of some variable selection methods when multicollinearity is present. Chemometr Intell Lab Syst 78:103–112

    Article  Google Scholar 

  • Cook NJ, Ciobanu CL, Danyushevsky LV, Gilbert S (2011) Minor and trace elements in bornite and associated Cu–(Fe)-sulfides: A LA-ICP-MS studyBornite mineral chemistry. Geochim Cosmochim Acta 75:6473–6496

    Article  Google Scholar 

  • Czamanske GK, Kunilov VE, Zientek ML, Cabri LJ, Likhachev AP, Calk LC, Oscarson RL (1992) A proton microprobe study of magmatic sulfide ores from the Noril’sk-Talnakh District, Siberia. Can Mineral 30:249–287

    Google Scholar 

  • Dare SA, Barnes S-J, Beaudoin G (2012) Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: Implications for provenance discrimination. Geochim Cosmochim Acta 88:27–50

    Article  Google Scholar 

  • Dare SA, Barnes S-J, Prichard HM, Fisher PC (2014) Mineralogy and geochemistry of Cu-rich ores from the McCreedy East Ni-Cu-PGE deposit (Sudbury, Canada): implications for the behavior of platinum group and chalcophile elements at the end of crystallization of a sulfide liquid. Econ Geol 109:343–366

    Article  Google Scholar 

  • Dare SAS, Barnes S-J, Prichard HM (2010) The distribution of platinum group elements (PGE) and other chalcophile elements among sulfides from the Creighton Ni–Cu–PGE sulfide deposit, Sudbury, Canada, and the origin of palladium in pentlandite. Mineral Deposita 45:765–793

    Article  Google Scholar 

  • Dare SAS, Barnes S-J, Prichard HM, Fisher PC (2010) The timing and formation of platinum-group minerals from the Creighton Ni-Cu-platinum-group element sulfide deposit, Sudbury, Canada: Early crystallization of PGE-rich sulfarsenides. Econ Geol 105:1071–1096

    Article  Google Scholar 

  • Dare SAS, Barnes S-J, Prichard HM, Fisher PC (2011) Chalcophile and platinum-group element (PGE) concentrations in the sulfide minerals from the McCreedy East deposit, Sudbury, Canada, and the origin of PGE in pyrite. Mineral Deposita 46:381–407

    Article  Google Scholar 

  • de Bronac de Vazelhes V (2019) Étude de la dispersion d’un gisement d'or dans les sédiments glaciaires: le cas d'Amaruq (Nunavut, Canada) (Master's thesis). Université Laval, pp 199.

  • Djon MLN, Barnes S-J (2012) Changes in sulfides and platinum-group minerals with the degree of alteration in the Roby, Twilight, and High Grade Zones of the Lac des Iles Complex, Ontario, Canada. Mineral Deposita 47:875–896. https://doi.org/10.1007/s00126-012-0401-z

    Article  Google Scholar 

  • Dunn K (2019) Process improvement using data. Experimentation for Improvement Hamilton, Ontario, Canada. Creat Commons Attribution-Share Alike 4:325–404

    Google Scholar 

  • Duran C, Barnes S, Pleše P, Prašek MK, Zientek ML, Pagé P (2017) Fractional crystallization-induced variations in sulfides from the Noril’sk-Talnakh mining district (polar Siberia, Russia). Ore Geol Rev 90:326–351

    Article  Google Scholar 

  • Duran CJ, Barnes S-J, Corkery JT (2016) Trace element distribution in primary sulfides and Fe–Ti oxides from the sulfide-rich pods of the Lac des Iles Pd deposits, Western Ontario, Canada: Constraints on processes controlling the composition of the ore and the use of pentlandite compositions in exploration. J Geochem Explor 166:45–63

    Article  Google Scholar 

  • Duran CJ, Barnes S-J, Corkery JT (2016) Geology, petrography, geochemistry, and genesis of sulfide-rich pods in the Lac des Iles palladium deposits, western Ontario, Canada. Mineral Deposita 51:509–532

    Article  Google Scholar 

  • Duran CJ, Dubé-Loubert H, Pagé P, Barnes S-J, Roy M, Savard D, Cave BJ, Arguin J-P, Mansur ET (2019) Applications of trace element chemistry of pyrite and chalcopyrite in glacial sediments to mineral exploration targeting: Example from the Churchill Province, northern Quebec, Canada. J Geochem Explor. https://doi.org/10.1016/j.gexplo.2018.10.006

  • Duran CJ, Barnes S-J, Mansur ET, Dare SAS, Bédard LP, Sluzhenikin SF (2020) Magnetite chemistry by LA-ICP-MS records sulfide fractional crystallization in massive nickel-copper-platinum group element ores from the Norilsk-Talnakh mining district (Siberia, Russia): Implications for trace element partitioning into magnetite. Econ Geol 115:1245–1266

    Article  Google Scholar 

  • Egozcue JJ, Pawlowsky-Glahn V (2011) Análisis composicional de datos en Ciencias Geoambientales. Bol Geol Min 122:439–452

    Google Scholar 

  • Favilla S, Durante C, Vigni ML, Cocchi M (2013) Assessing feature relevance in NPLS models by VIP. Chemometr Intell Lab Syst 129:76–86

    Article  Google Scholar 

  • Filzmoser P, Hron K, Reimann C (2009) Principal component analysis for compositional data with outliers. Environmetrics 20:621–632

    Article  Google Scholar 

  • Frenzel M, Hirsch T, Gutzmer J (2016) Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type—A meta-analysis. Ore Geol Rev 76:52–78

    Article  Google Scholar 

  • George LL, Cook NJ, Ciobanu CL (2016) Partitioning of trace elements in co-crystallized sphalerite–galena–chalcopyrite hydrothermal ores. Ore Geol Rev 77:97–116

    Article  Google Scholar 

  • George LL, Cook NJ, Crowe BB (2018) Ciobanu CLJMM. Trace Elem Hydrothermal Chalcopyrite 82:59–88

    Google Scholar 

  • Godel B, Barnes S-J, Maier WD (2006) 3-D distribution of sulphide minerals in the Merensky Reef (Bushveld Complex, South Africa) and the JM Reef (Stillwater Complex, USA) and their relationship to microstructures using X-ray computed tomography. J Petrol 47:1853–1872

    Article  Google Scholar 

  • Godel B, Barnes S-J, Maier WD (2007) Platinum-Group Elements in Sulphide Minerals, Platinum-Group Minerals, and Whole-Rocks of the Merensky Reef (Bushveld Complex, South Africa): Implications for the Formation of the Reef. Journal of Petrology 48:1569-1604. https://doi.org/10.1093/petrology/egm030

  • Godel B, Barnes S-J (2008) Platinum-group elements in sulfide minerals and the whole rocks of the JM Reef (Stillwater Complex): Implication for the formation of the reef. Chem Geol 248:272–294

    Article  Google Scholar 

  • Godel B (2015) Platinum-Group Element Deposits in Layered Intrusions: Recent Advances in the Understanding of the Ore Forming Processes In: Charlier B, Namur O, Latypov R, Tegner C (eds) Layered Intrusions. Springer Netherlands, Dordrecht, pp 379-432.

  • Gosselin R, Rodrigue D, Duchesne C (2010) A Bootstrap-VIP approach for selecting wavelength intervals in spectral imaging applications. Chemometr Intell Lab Syst 100:12–21

    Article  Google Scholar 

  • Goulet A (2016) Composition chimique de la chalcopyrite et application à l’exploration minérale (Undergraduate thesis). Département de géologie et génie géologique, Université Laval (ed). pp 99

  • Green T, Peck D (2005) Platinum group elements exploration: economic considerations and geological criteria In: Mungall JE (ed) Exploration For Platinum-Group Elements Deposits. Mineralogical Association of Canada. Short Course Series, Volume 35, pp 247–274

  • Harris DC, Cabri LJ, Nobiling R (1984) Silver-bearing chalcopyrite, a principal source of silver in the Izok Lake massive-sulfide deposit; confirmation by electron-and proton-microprobe analyses. Can Mineral 22:493–498

    Google Scholar 

  • Hashmi S, Ward BC, Plouffe A, Leybourne MI, Ferbey T (2015) Geochemical and mineralogical dispersal in till from the Mount Polley Cu-Au porphyry deposit, central British Columbia, Canada. Geochem Explor Environ Anal 15:234–249

    Article  Google Scholar 

  • Hawley J, Nichol I (1961) Trace elements in pyrite, pyrrhotite and chalcopyrite of different ores. Econ Geol 56:467–487

    Article  Google Scholar 

  • Holwell DA, McDonald I (2007) Distribution of platinum-group elements in the Platreef at Overysel, northern Bushveld Complex: a combined PGM and LA-ICP-MS study. Contrib Mineral Petrol 154:171–190

    Article  Google Scholar 

  • Hron K, Templ M, Filzmoser P (2010) Imputation of missing values for compositional data using classical and robust methods. Comput Stat Data Anal 54:3095–3107

    Article  Google Scholar 

  • Huston DL, Sie SH, Suter GF, Cooke DR, Both RA (1995) Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; Part I, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II, Selenium levels in pyrite; comparison with delta 34 S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Econ Geol 90:1167–1196

    Article  Google Scholar 

  • Jochum KP, Nohl U, Herwig K, Lammel E, Stoll B, Hofmann AW (2005) GeoReM: a new geochemical database for reference materials and isotopic standards. Geostand Geoanal Res 29:333–338

    Article  Google Scholar 

  • Kase K (1987) Tin-bearing chalcopyrite from the Izumo vein, Toyoha mine, Hokkaido, Japan. Can Mineral 25:9–13

    Google Scholar 

  • Kitakaze A, Machida T, Komatsu R (2016) Phase Relations in the Fe–ni–s System from 875 To 650° c. Can Mineral 54:1175–1186

    Article  Google Scholar 

  • Knight RD, Prichard HM, Ferreira Filho CF (2017) Evidence for As contamination and the partitioning of Pd into Pentlandite and Co+ platinum group elements into pyrite in the Fazenda Mirabela intrusion, Brazil. Econ Geol 112:1889–1912

    Article  Google Scholar 

  • Kojima S, Sugaki A (1985) Phase relations in the Cu-Fe-Zn-S system between 500 degrees and 300 degrees C under hydrothermal conditions. Economic Geology 80:158-171. https://doi.org/10.2113/gsecongeo.80.1.158

  • Kosyakov VI, Sinyakova EF (2012) Physicochemical prerequisites for the formation of primary orebody zoning at copper-nickel sulfide deposits (by the example of the systems Fe–Ni–S and Cu–Fe–S). Russ Geol Geophys 53:861–882

    Article  Google Scholar 

  • Lazich BJ (2010) The trace-element chemistry of chalcopyrite and its potential application to discriminate ore deposit types: Application to the Archean, syenite-associated Upper Beaver Cu-Au deposit, Kirkland. University Sudbury, Laurentian, p 45

    Google Scholar 

  • Lee LC, Liong C-Y, Jemain AA (2018) Partial least squares-discriminant analysis (PLS-DA) for classification of high-dimensional (HD) data: a review of contemporary practice strategies and knowledge gaps. Analyst 143:3526–3539

    Article  Google Scholar 

  • Li C, Ripley EM (2011) The giant Jinchuan Ni-Cu-(PGE) deposit; tectonic setting, magma evolution, ore genesis, and exploration implications. Rev Econ Geol 17:163–180

    Google Scholar 

  • Liu H, Beaudoin G (2021) Geochemical signatures in native gold derived from Au-bearing ore deposits. Ore Geology Reviews 132:104066. https://doi.org/10.1016/j.oregeorev.2021.104066

  • Liu H, Beaudoin G, Makvandi S, Jackson SE, Huang X (2021) Multivariate statistical analysis of trace element compositions of native gold from orogenic gold deposits: Implication for mineral exploration. Ore Geology Reviews 131:104061. https://doi.org/10.1016/j.oregeorev.2021.104061

  • Liu Y, Brenan J (2015) Partitioning of platinum-group elements (PGE) and chalcogens (Se, Te, As, Sb, Bi) between monosulfide-solid solution (MSS), intermediate solid solution (ISS) and sulfide liquid at controlled fO2–fS2 conditions. Geochim Cosmochim Acta 159:139–161

    Article  Google Scholar 

  • Lyubetskaya T, Korenaga J (2007) Chemical composition of Earth's primitive mantle and its variance: 1. Method and results. Journal of Geophysical Research: Solid Earth 112.https://doi.org/10.1029/2005JB004223

  • Makvandi S, Ghasemzadeh-Barvarz M, Beaudoin G, Grunsky EC, Beth McClenaghan M, Duchesne C (2016) Principal component analysis of magnetite composition from volcanogenic massive sulfide deposits: Case studies from the Izok Lake (Nunavut, Canada) and Halfmile Lake (New Brunswick, Canada) deposits. Ore Geol Rev 72:60–85. https://doi.org/10.1016/j.oregeorev.2015.06.023

    Article  Google Scholar 

  • Makvandi S, Ghasemzadeh-Barvarz M, Beaudoin G, Grunsky EC, McClenaghan MB, Duchesne C, Boutroy E (2016) Partial least squares-discriminant analysis of trace element compositions of magnetite from various VMS deposit subtypes: Application to mineral exploration. Ore Geol Rev 78:388–408

    Article  Google Scholar 

  • Mansur ET, Barnes S-J, Duran CJ (2019) Textural and compositional evidence for the formation of pentlandite via peritectic reaction: Implications for the distribution of highly siderophile elements. Geology 47:351–354

    Article  Google Scholar 

  • Mansur ET, Barnes S-J (2020) Concentrations of Te, As, Bi, Sb and Se in the Marginal Zone of the Bushveld Complex: Evidence for crustal contamination and the nature of the magma that formed the Merensky Reef. Lithos 358-359:105407. https://doi.org/10.1016/j.lithos.2020.105407

  • Mansur ET, Barnes S-J (2020) The role of Te, As, Bi, Sn and Sb during the formation of platinum-group-element reef deposits: examples from the Bushveld and Stillwater complexes. Geochim Cosmochim Acta 272:235–258

    Article  Google Scholar 

  • Mansur ET, Barnes S-J, Duran CJ, Sluzhenikin SF (2020) Distribution of chalcophile and platinum-group elements among pyrrhotite, pentlandite, chalcopyrite and cubanite from the Noril’sk-Talnakh ores: Implications for the formation of platinum-group minerals. Mineral Deposita 55:1215–1232

    Article  Google Scholar 

  • Mansur ET, Barnes S-J, Duran CJ (2021) An overview of chalcophile element contents of pyrrhotite, pentlandite, chalcopyrite, and pyrite from magmatic Ni-Cu-PGE sulfide deposits. Mineralium Deposita 56:179-204. https://doi.org/10.1007/s00126-020-01014-3

  • Maslennikov V, Maslennikova S, Large R, Danyushevsky L (2009) Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (Southern Urals, Russia) using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS). Econ Geol 104:1111–1141

    Article  Google Scholar 

  • McClenaghan MB (2005) Indicator mineral methods in mineral exploration. Geochem Explor Environ Anal 5:233–245

    Article  Google Scholar 

  • Mehmood T, Liland KH, Snipen L, Sæbø S (2012) A review of variable selection methods in partial least squares regression. Chemometr Intell Lab Syst 118:62–69

    Article  Google Scholar 

  • Mendez KM, Broadhurst DI, Reinke SN (2020) Migrating from partial least squares discriminant analysis to artificial neural networks: a comparison of functionally equivalent visualisation and feature contribution tools using jupyter notebooks. Metabolomics 16:17. https://doi.org/10.1007/s11306-020-1640-0

    Article  Google Scholar 

  • Moggi-Cecchi V, Cipriani C, Rossi P, Ceccato D, Rudello V, Somacal H (2002) Trace element contents and distribution maps of chalcopyrite: a micro-PIXE study. Per Mineral 71:101–109

    Google Scholar 

  • Mungall JE (2007) Crustal contamination of picritic magmas during transport through dikes: the Expo Intrusive Suite, Cape Smith fold belt, New Quebec. J Petrol 48:1021–1039

    Article  Google Scholar 

  • Naldrett AJ (2004) Magmatic sulfide deposits: Geology, geochemistry and exploration. Springer, Berlin, Heidelberg, 728 p.

  • Palarea-Albaladejo J, Martín-Fernández JA, Gómez-García J (2007) A parametric approach for dealing with compositional rounded zeros. Mathe Geol 39:625–645

    Article  Google Scholar 

  • Palarea-Albaladejo J, Martín-Fernández JA (2008) A modified EM alr-algorithm for replacing rounded zeros in compositional data sets. Comput Geosci 34:902–917

    Article  Google Scholar 

  • Palarea-Albaladejo J, Martín-Fernández JA (2015) zCompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemometr Intell Lab Syst 143:85–96

    Article  Google Scholar 

  • Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: Freeware for the visualisation and processing of mass spectrometric data. J Anal At Spectrom 26:2508–2518

    Article  Google Scholar 

  • Pawlowsky-Glahn V, Buccianti A (2011) Compositional data analysis: Theory and applications. John Wiley & Sons, 378 p.

  • Perez DR, Narasimhan G (2018) So you think you can PLS-DA? bioRxiv:207225

  • Piña R, Gervilla F, Barnes S-J, Ortega L, Lunar R (2012) Distribution of platinum-group and chalcophile elements in the Aguablanca Ni–Cu sulfide deposit (SW Spain): evidence from a LA-ICP-MS study. Chem Geol 302:61–75

    Article  Google Scholar 

  • Piña R, Gervilla F, Barnes SJ, Oberthür T, Lunar R (2016) Platinum-group element concentrations in pyrite from the Main Sulfide Zone of the Great Dyke of Zimbabwe. Mineral Deposita 51:853–872

    Article  Google Scholar 

  • Plouffe A, Ferbey T, Hashmi S, Ward B (2016) Till geochemistry and mineralogy: vectoring towards Cu porphyry deposits in British Columbia, Canada. Geochem Explor Environ Anal 16:213–232

    Article  Google Scholar 

  • Reich M, Palacios C, Barra F, Chryssoulis S (2013) “Invisible” silver in chalcopyrite and bornite from the Mantos Blancos Cu deposit, northern Chile. European Journal of Mineralogy 25:453-460.

  • Ren Y, Huang F, Li Y, Zhu J, Wan Q, Yu L, Zhang Z, Gao S (2017) Genesis Study of the Nano-Micron Sphalerite Exsolution in Chalcopyrite from the Gengzhuang Gold Deposit in China. J Nanosci Nanotechnol 17:6677–6685

    Article  Google Scholar 

  • Ripley EM, Li C (2011) A review of conduit-related Ni-Cu-(PGE) sulfide mineralization at the Voisey’s Bay Deposit, Labrador, and the Eagle Deposit, northern Michigan. Rev Econ Geol 17:181–197

    Google Scholar 

  • Ripley EM, Li C (2013) Sulfide Saturation in Mafic Magmas: Is External Sulfur Required for Magmatic Ni-Cu-(PGE) Ore Genesis? Econ Geol 108:45–58. https://doi.org/10.2113/econgeo.108.1.45

    Article  Google Scholar 

  • Ripley EM (2014) Ni-Cu-PGE Mineralization in the Partridge River, South Kawishiwi, and Eagle Intrusions: A Review of Contrasting Styles of Sulfide-Rich Occurrences in the Midcontinent Rift System. Econ Geol 109:309–324. https://doi.org/10.2113/econgeo.109.2.309

    Article  Google Scholar 

  • Rose AW (1967) Trace elements in solflde minerals from the Central district, New Mexico and the Bingham district, Utah. Geochim Cosmochim Acta 31:547–585

    Article  Google Scholar 

  • Rouxel OJ, Luais B (2017) Germanium isotope geochemistry. Rev Mineral Geochem 82:601–656

    Article  Google Scholar 

  • Salim Amaral LF (2017) The distribution of platinum-group elements and other chalcophile elements among sulfide minerals from the Ovoid ore body of the Voisey’s Bay Ni-Cu sulfide deposit, Canada (Master's thesis) Département des sciences appliquées. Université du Québec à Chicoutimi, Chicoutimi, pp 154.

  • Samalens N, Barnes S-J, Sawyer EW (2017) The role of black shales as a source of sulfur and semimetals in magmatic nickel-copper deposits: Example from the Partridge River Intrusion, Duluth Complex, Minnesota, USA. Ore Geol Rev 81:173–187

    Article  Google Scholar 

  • Schulz KJ, Woodruff LG, Nicholson SW, Seal Ii RR, Piatak NM, Chandler VW, Mars JL (2014) Occurrence model for magmatic sulfide-rich nickel-copper-(platinum-group element) deposits related to mafic and ultramafic dike-sill complexes: Chapter I in Mineral deposit models for resource assessment (Scientific Investigations Report 2010-5070-I). US Geological Survey, pp 80.

  • Sciuba M, Beaudoin G, Grzela D, Makvandi S (2020) Trace element composition of scheelite in orogenic gold deposits. Mineralium Deposita 55:1149-1172. https://doi.org/10.1007/s00126-019-00913-4

  • Sciuba M, Beaudoin G, Makvandi S (2021) Chemical composition of tourmaline in orogenic gold deposits. Mineral Deposita 56:537–560

    Article  Google Scholar 

  • Song X-Y, Keays RR, Zhou M-F, Qi L, Ihlenfeld C, Xiao J-F (2009) Siderophile and chalcophile elemental constraints on the origin of the Jinchuan Ni-Cu-(PGE) sulfide deposit, NW China. Geochim Cosmochim Acta 73:404–424. https://doi.org/10.1016/j.gca.2008.10.029

    Article  Google Scholar 

  • Sugaki A, Kitakaze A, Kojima S (1987) Bulk compositions of intimate intergrowths of chalcopyrite and sphalerite and their genetic implications. Mineral Deposita 22:26–32

    Article  Google Scholar 

  • Sun C (2018) Partitioning and partition coefficients In: White WM (ed) Encyclopedia of geochemistry Encyclopedia of earth sciences series. Springer, pp 1186-1197

  • Vaughan DJ (2006) Sulfide mineralogy and geochemistry: introduction and overview. Rev Mineral Geochem 61:1–5

    Article  Google Scholar 

  • Wang Z, Xu D, Zhang Z, Zou F, Wang L, Yu L, Hu M (2015) Mineralogy and trace element geochemistry of the Co-and Cu-bearing sulfides from the Shilu Fe–Co–Cu ore district in Hainan Province of South China. J Asian Earth Sci 113:980–997

    Article  Google Scholar 

  • Westerhuis JA, Hoefsloot HCJ, Smit S, Vis DJ, Smilde AK, van Velzen EJJ, van Duijnhoven JPM, van Dorsten FA (2008) Assessment of PLSDA cross validation. Metabolomics 4:81–89

    Article  Google Scholar 

  • Wilcox R (2011) Chapter 3 - Estimating Measures of Location and Scale In: Wilcox R (ed) Introduction to Robust Estimation and Hypothesis Testing (Third Edition). Academic Press, Boston, pp 43-101.

  • Wilson SA, Ridley WI, Koenig AE (2002) Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique. J Anal At Spectrom 17:406–409

    Article  Google Scholar 

  • Wohlgemuth-Ueberwasser CC, Viljoen F, Petersen S, Vorster C (2015) Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: An in-situ LA-ICP-MS study. Geochim Cosmochim Acta 159:16–41

    Article  Google Scholar 

  • Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemometr Intell Lab Syst 58:109–130

    Article  Google Scholar 

  • Wold, S., Eriksson, L., Trygg, J., & Kettaneh, N. (2004, August). The PLS method-partial least squares projections to latent structures and its applications in industrial RDP. In COMPSTAT 2004, 16th Symposium of IASC, PRAGUE.

  • Wood BJ, Kiseeva ES (2015) Trace element partitioning into sulfide: How lithophile elements become chalcophile and vice versa†. Am Mineral 100:2371–2379. https://doi.org/10.2138/am-2015-5358CCBYNCND

    Article  Google Scholar 

  • Zientek ML, Likhachev AP, Kunilov VE, Barnes S-J, Meier AL, Carlson RR, Briggs PH, Fries TL, Adrian BM, Lightfoot PC (1994) Cumulus processes and the composition of magmatic ore deposits: examples from the Talnakh district, Russia. Ont Geol Surv Spec Publ 5:373–392

    Google Scholar 

Download references

Acknowledgements

This study was funded by the Natural Science and Engineering Research Council of Canada (NSERC), Agnico Eagle Mines Limited and le Ministère de l’Energie et des Ressources Naturelles du Québec. We thank the numerous colleagues that provided samples for this study, especially Sarah-Jane Barnes at UQAC for access to her extensive collection of magmatic sulfide deposits. We are very grateful to Dany Savard and Audrey Lavoie from LabMaTer, Université du Québec à Chicoutimi for their support with LA-ICP-MS analyses, to Marc Choquette and Suzie Coté from Université Laval for their assistance and support for SEM and EPMA analyzes and Edmond Rousseau for his support for sample preparation. We thank the referees, Eduardo Mansur and Ruben Piña, and Associate Editor Wolfgang Maier for their judicious comments which helped improve the paper significantly.

Funding

The research is funded by Agnico Eagle Mines Ltd., the Ministère de l’Énergie et des Ressources Naturelles du Québec and the Natural Sciences and Engineering Research Council

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enzo Caraballo.

Additional information

Editorial Handling: W. D. Maier.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4053 KB)

Supplementary file2 (XLSX 485 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caraballo, E., Dare, S. & Beaudoin, G. Variation of trace elements in chalcopyrite from worldwide Ni-Cu sulfide and Reef-type PGE deposits: implications for mineral exploration. Miner Deposita 57, 1293–1321 (2022). https://doi.org/10.1007/s00126-021-01091-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-021-01091-y

Keywords

Navigation