Skip to main content
Log in

Lorentz Transformation and Its Generalizations in Problems of Precisely Controlling the States of Multilevel Quantum Systems

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

A method of precision quantum measurements is proposed, which makes it possible to accurately track the states of multilevel quantum systems in Hilbert spaces of various dimensions. The developed quantum control algorithms are based on the use of the spinor representation of the Lorentz transformation group and its generalizations to the case of multilevel quantum systems. It is shown that feedback through weakly perturbing adaptive quantum measurements is capable of providing precise control of the quantum system, while introducing only weak perturbations in the initial quantum state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig 3.

Similar content being viewed by others

REFERENCES

  1. Wigner, E., On unitary representations of the inhomogeneous Lorentz group, Ann. Math., 1939, vol. 40, pp. 149–204.

    Article  MathSciNet  Google Scholar 

  2. Naimark, M.A., Linear representations of the Lorentz group, Usp. Mat. Nauk, 1954, vol. 9, no. 4 (62), pp. 19–93.

  3. Bogdanov, Yu.I., Bogdanova, N.A., Bantysh, B.I., and Kuznetsov, Yu.A., The concept of weak measurements and the super-efficiency of quantum tomography, Proc. SPIE, 2019, vol. 11022, p. 110222O; arXiv: 1906.06377 [quant-ph]. https://doi.org/10.1117/12.2522078

  4. Bogdanov, Yu.I., Unified statistical method for reconstructing quantum states by purification, J. Exp. Theor. Phys., 2009, vol. 108, no. 6, pp. 928–935.

    Article  Google Scholar 

  5. Bogdanov, Yu.I., Brida, G., Genovese, M., Kulik, S.P., Moreva, E.V., and Shurupov, A.P., Statistical estimation of the efficiency of quantum state tomography protocols, Phys. Rev. Lett., 2010, vol. 105, p. 010404.

    Article  Google Scholar 

  6. Bogdanov, Yu.I., Brida, G., Bukeev, I.D., Genovese, M., Kravtsov, K.S., Kulik, S.P., Moreva, E.V., Soloviev, A.A., and Shurupov, A.P., Statistical estimation of quantum tomography protocols quality, Phys. Rev. A, 2011, vol. 84, p. 042108.

    Article  Google Scholar 

  7. Nielsen, M.A. and Chuang, I.L., Quantum Computation and Quantum Information, Cambridge: Cambridge Univ. Press, 2000.

    MATH  Google Scholar 

  8. Han, D., Kim, Y.S., and Noz, M.E., Stokes parameters as a Minkowskian four-vector, Phys. Rev. E, 1997, vol. 56, pp. 6065–76.

    Article  Google Scholar 

  9. Kim, Y.S., Lorentz group in polarization optics, J. Opt. B: Quantum Semiclass. Opt., 2000, vol. 2, no. 2.

  10. Teodorescu-Frumosu, M. and Jaeger, G., Quantum Lorentz-group invariants of n-qubit systems, Phys. Rev. A, 2003, vol. 67, p. 052305.

    Article  MathSciNet  Google Scholar 

  11. Baskal, S., Georgieva, E., Kim, Y.S., and Noz, M., Lorentz group in classical ray optics, J. Opt. B: Quantum Semiclass. Opt., 2004, vol. 6, pp. S455–S472.

    Article  MathSciNet  Google Scholar 

  12. Kim, Y.S., Varró, S., Ádám, P., Biró, T.S., Barna-földi, G.G., and Lévai, P., Poincaré sphere and a unified picture of Wigner’s little groups, EPJ Web of Conf., 2014, vol. 78, p. 01005.

  13. Penrose, R. and Rindler, W., Spinors and Space-Time, Vol. 1: Two-Spinor Calculus and Relativistic Fields, Cambridge: Cambridge Univ. Press, 1984.

    MATH  Google Scholar 

  14. Penrose, R. and Rindler, W., Spinors and Space-Time, Vol. 2: Spinor and Twistor Methods in Space-Time Geometry, Cambridge: Cambridge Univ. Press, 1986.

    Book  Google Scholar 

  15. Bogdanov, Yu.I., Bukeev, I.D., and Gavrichenko, A.K., Studying adequacy, completeness, and accuracy of quantum measurement protocols, Opt. Spectrosc., 2011, vol. 111, no. 4, pp. 647–655.

    Article  Google Scholar 

  16. Berestetskii V.B., Lifshits, E.M., and Pitaevskii L.P., Teoreticheskaya fizika. T. 4. Kvantovaya elektrodinamika (Course of Theoretical Physics, Vol. 4: Quantum Electrodynamics), Moscow: Nauka, 1989; Oxford: Pergamon, 1982.

  17. Bogdanov, Yu.I., Bantysh, B.I., Bogdanova, N.A., Kvasnyy, A.B., and Lukichev, V.F., Quantum states tomography with noisy measurement channels, Proc. SPIE, 2016, vol. 10224, p. 102242O.

    Article  Google Scholar 

  18. Bantysh, B.I., Bogdanov, Yu.I., Bogdanova, N.A., and Kuznetsov, Yu.A., Precise tomography of optical polarization qubits under conditions of chromatic aberration of quantum transformations, Laser Phys. Lett., 2020, vol. 17, p. 035205.

    Article  Google Scholar 

  19. Uhlmann, A., The ‘transition probability’ in the state space of a *-algebra, Rep. Math. Phys., 1976, vol. 9, p. 273.

    Article  MathSciNet  Google Scholar 

  20. Uhlmann, A., Fidelity and concurrence of conjugated states, Phys. Rev. A, 2000, vol. 62, p. 032307.

    Article  MathSciNet  Google Scholar 

  21. Durt, T., Englert, B., Bengtsson, I., and Życzkowski, K., On mutually unbiased bases, Int. J. Quantum Inform., 2010, vol. 8, pp. 535–640.

    Article  Google Scholar 

  22. Bogdanov, Yu.I., Chekhova, M.V., Krivitsky, L.A., Kulik, S.P., Penin, A.N., Zhukov, A.A., Kwek, L.C., Oh, C.H., and Tey, M.K., Statistical reconstruction of qutrits, Phys. Rev. A, 2004, vol. 70, no. 4, p. 042303.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, program no. FFNN-2022-0016 for the Valiev Institute of Physics and Technology, Russian Academy of Sciences, by the Russian Foundation for Basic Research, grant no. 19-37-90109, and by the Foundation for the Advancement of Theoretical Physics and Mathematics BASIS, project no. 20-1-1-34-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Bogdanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogdanov, Y.I., Bogdanova, N.A., Kuznetsov, Y.A. et al. Lorentz Transformation and Its Generalizations in Problems of Precisely Controlling the States of Multilevel Quantum Systems. Russ Microelectron 51, 43–53 (2022). https://doi.org/10.1134/S1063739722020044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739722020044

Navigation