Skip to main content
Log in

Temperature-Frequency Study of Germanium Selenide Memristors with a Self-Directed Current-Conducting Channel

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The experimental data on the measurement of resistance and electrical conductivity in a low-resistance mode of operation of a memristor based on germanium selenide with a self-directed conductive channel in the range of switching frequencies and temperatures are presented. In the frequency experiment, the switching frequency effect is conducted at room temperature in the range of 1 to 10 000 Hz. An experiment to study the effect of temperature on resistance and electrical conductivity is carried out in the temperature range –10–65°C at a switching frequency of 10 Hz. The aim of this study is to determine the activation energy of the formation of a conductive channel. It is shown that in the temperature range 22–65°C electrical conductivity obeys the Arrhenius law with an activation energy of 0.19 eV; at temperatures below room temperature, the electrical conductivity is insensitive to temperature changes. The reasons for the low value of the activation energy are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Chua, L.O., Memristor—missing circuit element, IEEE Trans. Circuit Theory, 1971, vol. 18, pp. 507–519.

    Article  Google Scholar 

  2. Chua, L.O. and Kang, S.M., Memristive devices and systems, Proc. IEEE, 1976, vol. 64, pp. 209–223.

    Article  MathSciNet  Google Scholar 

  3. Yang, J.J., Strukov, D.B., and Stewart, D.R., Memristive devices for computing, Nat. Nanotechnol., 2013, vol. 8, no. 1, pp. 13–24.

    Article  Google Scholar 

  4. Bersuker, G., Gilmer, D.C., Veksler, D., Kirsch, P., Vandelli, L., Padovani, A., Larcher, L., McKenna, K., Shluger, A., Iglesias, V., Porti, M., and Nafrıa, M., Metal oxide resistive memory switching mechanism based on conductive filament properties, J. Appl. Phys., 2011, vol. 110, p. 124518.

    Article  Google Scholar 

  5. Kim, K.M., Jeong, D.S., and Hwang, C.S., Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook, Nanotecnology, 2011, vol. 22, p. 254002.

    Article  Google Scholar 

  6. Waser, R. and Aono, M., Nanoionics-based resistive switching memories, Nat. Mater., 2007, vol. 6, no. 11, pp. 833–840.

    Article  Google Scholar 

  7. Waser, R., Dittmann, R., Staikov, G., and Szot, K., Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges, Adv. Mater., 2009, vol. 21, pp. 2632–2663.

    Article  Google Scholar 

  8. Valov, I., Waser, R., Jameson, J.R., and Kozicki, M.N., Electrochemical metallization memories—fundamentals, applications, prospects, Nanotecnology, 2011, vol. 22, p. 254003.

    Article  Google Scholar 

  9. Linn, E., Rosezin, R., Kuegeler, C., and Waser, R., Complementary resistive switches for passive nanocrossbar memories, Nat. Mater., 2010, vol. 9, pp. 403–406.

    Article  Google Scholar 

  10. Campbell, K.A., Self-directed channel memristor for high temperature operation, Microelectron. J., 2017, vol. 59, pp. 10–14.

    Article  Google Scholar 

  11. Campbell, K.A. and Anderson, C.M., Рhase-change memory devices with stacked Ge-chalcogenide/Sn-chalcogenide layers, Microelectron. J., 2007, vol. 38, pp. 52–59.

  12. Edwards, A.H., Campbell, K.A., and Pineda, A.C., Self-trapping of single and paired electrons in Ge2Se3, J. Phys.: Condens. Matter, 2012, vol. 24, no. 19, p. 195801.

    Google Scholar 

  13. Devasia, A., Kurinec, S., Campbell, K.A., and Raoux, S., Influence of Sn migration on phase transition in GeTe and Ge2Se3 thin films, Appl. Phys. Lett., 2010, vol. 96, p. 141908.

    Article  Google Scholar 

  14. Jarvis, K., Carpenter, R.W., Davis, M., and Campbell, K.A., An investigation of amorphous Ge2Se3 structure for phase change memory devices using fluctuation electron microscopy, J. Appl. Phys., 2009, vol. 106, p. 083507.

    Article  Google Scholar 

  15. Aleshin, A.N. and Enisherlova, K.L., Physicochemical fundamentals of phase formation in silicon layers implanted with oxygen and carbon, Mod. Electron. Mater., 2019, vol. 5, no. 2, pp. 77–85.

    Article  Google Scholar 

  16. Abe, H., Yamamoto, S., Miyashita, A., and Siskafus, K.E., Formation mechanism for carbon onions and nanocapsules in C+ ions implanted copper, J. Appl. Phys., 2001, vol. 90, no. 7, pp. 3353–3358.

    Article  Google Scholar 

  17. Esin, V.Ya., Influence of associates within grain boundaries on the parameters of grain boundary diffusion, Extended Abstract of Cand. Sci. Dissertation, Moscow: NITU MISiS, 2011.

  18. Campbell, K.A. and Moore, J.T., Silver-selenide/chalcogenide glass stack for resistance variable memory, US Patent no. 7 151 273, 2006.

  19. Bokshtein, B.S. and Mendelev, M.I., Kratkii kurs fizicheskoi khimii (Short Course of Physical Chemistry), Moscow: CheRo, 1999.

  20. Strukov, D.B. and Williams, R.S., Exponential ionic drift: fast switching and low volatility of thin-film memristors, Appl. Phys. A, 2009, vol. 94, pp. 515–519.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, grant no. 19-29-03003 MK.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. N. Aleshin or O. A. Ruban.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleshin, A.N., Ruban, O.A. Temperature-Frequency Study of Germanium Selenide Memristors with a Self-Directed Current-Conducting Channel. Russ Microelectron 51, 59–67 (2022). https://doi.org/10.1134/S1063739722020020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739722020020

Keywords:

Navigation