Skip to main content
Log in

A Unified Approach to Uniform Signal Recovery From Nonlinear Observations

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

Recent advances in quantized compressed sensing and high-dimensional estimation have shown that signal recovery is even feasible under strong nonlinear distortions in the observation process. An important characteristic of associated guarantees is uniformity, i.e., recovery succeeds for an entire class of structured signals with a fixed measurement ensemble. However, despite significant results in various special cases, a general understanding of uniform recovery from nonlinear observations is still missing. This paper develops a unified approach to this problem under the assumption of i.i.d. sub-Gaussian measurement vectors. Our main result shows that a simple least-squares estimator with any convex constraint can serve as a universal recovery strategy, which is outlier robust and does not require explicit knowledge of the underlying nonlinearity. Based on empirical process theory, a key technical novelty is an approximative increment condition that can be implemented for all common types of nonlinear models. This flexibility allows us to apply our approach to a variety of problems in nonlinear compressed sensing and high-dimensional statistics, leading to several new and improved guarantees. Each of these applications is accompanied by a conceptually simple and systematic proof, which does not rely on any deeper properties of the observation model. On the other hand, known local stability properties can be incorporated into our framework in a plug-and-play manner, thereby implying near-optimal error bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. In particular, we will not discuss any details about possible algorithmic implementations of (\({\mathsf {P}}_{K,\varvec{y}}\)), which is an important subject in its own right.

  2. Here, the \(\nu _i\) correspond to adversarial noise, i.e., as long as the \(\ell ^{2}\)-constraint is satisfied, they could be arbitrary (even worst-case) perturbations. This model is very common in uniform recovery and compressed sensing, cf. [21]. But note that compared to statistical noise, this comes at the price of consistent estimation, i.e., the reconstruction error may not become arbitrarily small if \(m \rightarrow \infty \); see Remark 1 and 4 for further discussion.

  3. This is an important difference to the non-uniform regime, where \(\varvec{x}\) is a fixed signal. In this case, it is possible to apply known multiplier concentrations inequalities to control (1.3), e.g., see [42, Thm. 1.9].

  4. Note that we actually have that \(L\ge \sqrt{1/\log (2)} > 1\) if \(\varvec{a}\) is isotropic, see [35].

  5. One should bear in mind that the target function \(T\) is a purely theoretical object that does not affect the solution of (\({\mathsf {P}}_{K,\varvec{y}}\)) and may be (partially) unknown in practice. Nevertheless, it is an essential analysis tool for Problem 1, relating the underlying observation model to the actual recovery method (\({\mathsf {P}}_{K,\varvec{y}}\)), see also Remark 2(1).

  6. The use of the modifier ‘\(\sim \)’ in Assumption 1 is also due to this fact and may help to distinguish between our observation model and the actual input for (\({\mathsf {P}}_{K,\varvec{y}}\)).

  7. The condition (2.3) is stated in such a way that it is convenient to handle in our specific applications (see Sect. 4). However, for a basic understanding, the reader may simply set \(u= u_0\), so that the first and second branch in (2.3) can be merged to \(m \gtrsim L^2(\log L+ L^2\varDelta ^2) \cdot \big (w_{t}^2(K- T\mathcal {X})+ u^2 \big )\).

  8. In the case of exact recovery, i.e., \(t = 0\), we follow the convention \(0 \cdot \infty {:=}0\), so that the condition (2.3) requires that \(r= \hat{r}= L_{t}= \hat{L}_{t}= 0\). Then, (2.3) is particularly fulfilled for \(m \ge C \cdot L^2 \log L\cdot (w_{0}^2(K- T\mathcal {X})+ u^2)\), where \(m_0= 0\), \(\varDelta = L^{-1} \sqrt{\log L}\), and \(u= u_0\).

  9. Note that the expression \(O(m^{-1/2})\) suppresses the dependence on \(w_{t}(K- T\mathcal {X})\). Although the latter can be trivially bounded by \(w_{0}(K- T\mathcal {X})\), which is independent of t, such an estimate might not appropriately capture the (low) complexity of \(K\) in certain cases.

  10. A simple example is as follows: For a unit vector \(\varvec{x}\in \mathbb {S}^{p-1}\) to be reconstructed, set \(\nu _i = c \cdot t \cdot \langle \varvec{a}_i, \varvec{x}\rangle \) for a constant \(c > 0\) small enough. If m is sufficiently large, then (3.8) holds with high probability. At the same time, we have that \(y_i = \langle \varvec{a}_i, \varvec{x}\rangle + \nu _i = \langle \varvec{a}_i, (1 + ct)\varvec{x}\rangle \). Hence, Corollary 1 can be also applied such that it certifies exact recovery of the rescaled vector \((1 + ct)\varvec{x}\) via (\({\mathsf {P}}_{K,\varvec{y}}\)). In other words, we have that \(\Vert \hat{\varvec{z}}- \varvec{x}\Vert _{2} = ct \cdot \Vert \varvec{x}\Vert _{2} \asymp t\).

  11. Here, it is important to note that, in contrast to \(K\), the (transformed) signal set \(T\mathcal {X}\) may be highly non-convex.

  12. The existence of an efficient projection and the (non-)convexity of \(K\) are not equivalent. There are many examples of efficient projections onto non-convex sets, while the projection onto convex sets can be NP-hard, e.g., see [53].

  13. To be more precise, we assume that the tuples \((\varvec{a}_i, F_i, \tilde{y}_{t,i})\) are independent copies of \((\varvec{a}, F, \tilde{y}_{t})\) for \(i = 1, \dots , m\). In particular, the respective conditions of Assumption 2(a)–(c) are also satisfied for \(\{\tilde{y}_{t,i}(\varvec{x})\}_{\varvec{x}\in \mathcal {X}}\).

  14. To be slightly more precise, we apply Theorem 8 to the index sets \(\mathcal {A}{:=}\mathcal {X}\) and \(\mathcal {B}{:=}K_{\mathcal {X},t}\), while \(X \sim \mathbb {P}\) corresponds to the random tuple \((\varvec{a}, F, \tilde{y}_{t})\).

References

  1. Ai, A., Lapanowski, A., Plan, Y., Vershynin, R.: One-bit compressed sensing with non-Gaussian measurements. Linear Algebra Appl. 441, 222–239 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Amelunxen, D., Lotz, M., McCoy, M.B., Tropp, J.A.: Living on the edge: phase transitions in convex programs with random data. Inf. Inference 3(3), 224–294 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Baraniuk, R.G., Foucart, S., Needell, D., Plan, Y., Wootters, M.: Exponential decay of reconstruction error from binary measurements of sparse signals. IEEE Trans. Inf. Theory 63(6), 3368–3385 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Bhandari, A., Krahmer, F., Raskar, R.: On unlimited sampling and reconstruction. IEEE Trans. Signal Process. 69, 3827–3839 (2020)

    MathSciNet  MATH  Google Scholar 

  5. Bora A, Jalal A, Price E, Dimakis AG. Compressed sensing using generative models. In: D. Precup, Y.W. Teh (eds.) Proceedings of the 34th International Conference on Machine Learning (ICML), 2017;70:537–546

  6. Boufounos PT, Jacques L, Krahmer F, Saab R. Quantization and compressive sensing. In: H. Boche, R. Calderbank, G. Kutyniok, J. Vybiral (eds.) Compressed Sensing and its Applications: MATHEON Workshop 2013, Applied and Numerical Harmonic Analysis, pp. 193–237. Birkhäuser Cham 2015

  7. Brillinger DR. A generalized linear model with “Gaussian” regressor variables. In: P.J. Bickel, K. Doksum, J. Hodges (eds.) A Festschrift For Erich L. Lehmann. Chapman and Hall/CRC 1982:pp. 97–114

  8. Cai, J.F., Xu, W.: Guarantees of total variation minimization for signal recovery. Inf. Inference 4(4), 328–353 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Candès, E.J., Eldar, Y.C., Strohmer, T., Voroninski, V.: Phase retrieval via matrix completion. SIAM J. Imaging Sci. 6(1), 199–225 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Candès, E.J., Romberg, J.K., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Candès, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math. 59(8), 1207–1223 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Chandrasekaran, V., Recht, B., Parrilo, P.A., Willsky, A.S.: The convex geometry of linear inverse problems. Found. Comput. Math. 12(6), 805–849 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Dabeer, O., Karnik, A.: Signal parameter estimation using 1-bit dithered quantization. IEEE Trans. Inf. Theory 52(12), 5389–5405 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Dirksen S. Quantized compressed sensing: A survey. In: H. Boche, G. Caire, R. Calderbank, G. Kutyniok, R. Mathar, P. Petersen (eds.) Compressed Sensing and Its Applications: Third International MATHEON Conference 2017, Applied and Numerical Harmonic Analysis, . Birkhäuser Cham 2019;67–95

  15. Dirksen S, Genzel M, Jacques L, Stollenwerk A. The separation capacity of random neural networks 2021. Preprint 2108.00207

  16. Dirksen, S., Jung, H.C., Rauhut, H.: One-bit compressed sensing with partial Gaussian circulant matrices. Inf. Inference 9(3), 601–626 (2020)

    MathSciNet  MATH  Google Scholar 

  17. Dirksen S, Mendelson S. Non-Gaussian hyperplane tessellations and robust one-bit compressed sensing 2018. Preprint 1805.09409

  18. Dirksen S, Mendelson S. Robust one-bit compressed sensing with partial circulant matrices 2018. Preprint 1812.06719

  19. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Foucart S. Flavors of compressive sensing. In: G.E. Fasshauer, L.L. Schumaker (eds.) Approximation Theory XV: San Antonio 2016, Springer Proceedings in Mathematics & Statistics, 2017;61–104

  21. Foucart S, Rauhut H. A Mathematical Introduction to Compressive Sensing. Applied and Numerical Harmonic Analysis. Birkhäuser Basel 2013

  22. Genzel, M.: High-dimensional estimation of structured signals from non-linear observations with general convex loss functions. IEEE Trans. Inf. Theory 63(3), 1601–1619 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Genzel M. The mismatch principle and \(\ell ^1\)-analysis compressed sensing: A unified approach to estimation under large model uncertainties and structural constraints. Phd thesis, available online: https://doi.org/10.14279/depositonce-8394, Technische Universität Berlin 2019

  24. Genzel, M., Jung, P.: Recovering structured data from superimposed non-linear measurements. IEEE Trans. Inf. Theory 66(1), 453–477 (2020)

    MathSciNet  MATH  Google Scholar 

  25. Genzel M, Kipp C. Generic error bounds for the generalized Lasso with sub-exponential data 2020. Preprint 2004.05361

  26. Genzel, M., Kutyniok, G., März, M.: \(\ell ^1\)-analysis minimization and generalized (co-)sparsity: when does recovery succeed?. Appl. Comput. Harmon. Anal. 52, 82–140 (2021)

    MathSciNet  MATH  Google Scholar 

  27. Genzel M, März M, Seidel R. (2021) Compressed sensing with 1D total variation: breaking sample complexity barriers via non-uniform recovery. Inf Inference.https://doi.org/10.1093/imaiai/iaab001

    Article  MATH  Google Scholar 

  28. Genzel, M., Stollenwerk, A.: Robust 1-bit compressed sensing via hinge loss minimization. Inf. Inference 9(2), 361–422 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Goldstein, L., Minsker, S., Wei, X.: Structured signal recovery from non-linear and heavy-tailed measurements. IEEE Trans. Inf. Theory 64(8), 5513–5530 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Gordon, Y.: On Milman’s inequality and random subspaces which escape through a mesh in \({\mathbb{R}}^n\). In: J. Lindenstrauss, V.D. Milman (eds.) Geometric Aspects of Functional Analysis, Springer Berlin Heidelberg, New York (1988)

    Google Scholar 

  31. Gray, R.M., Neuhoff, D.L.: Quantization. IEEE Trans. Inf. Theory 44(6), 2325–2383 (1998)

    MATH  Google Scholar 

  32. Gray, R.M., Stockham, T.G.: Dithered quantizers. IEEE Trans. Inf. Theory 39(3), 805–812 (1993)

    MATH  Google Scholar 

  33. Jacques, L., Cambareri, V.: Time for dithering: fast and quantized random embeddings via the restricted isometry property. Inf. Inference 6(4), 441–476 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Jacques, L., Laska, J.N., Boufounos, P.T., Baraniuk, R.G.: Robust 1-bit compressive sensing via binary stable embeddings of sparse vectors. IEEE Trans. Inf. Theory 59(4), 2082–2102 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Jeong H, Li X, Plan Y, Yılmaz Ö. Sub-gaussian matrices on sets: Optimal tail dependence and applications 2020. Preprint 2001.10631

  36. Jung HC, Maly J, Palzer L, Stollenwerk A. Quantized compressed sensing by rectified linear units 2019. Preprint 1911.07816

  37. Knudson, K., Saab, R., Ward, R.: One-bit compressive sensing with norm estimation. IEEE Trans. Inf. Theory 62(5), 2748–2758 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Krahmer F, Kruschel C, Sandbichler M. Total Variation Minimization in Compressed Sensing. In: H. Boche, G. Caire, R. Calderbank, M. März, G. Kutyniok, R. Mathar (eds.) Compressed Sensing and its Applications: Second International MATHEON Conference 2015,. Birkhäuser 2017;pp. 333–358

  39. Liu Z, Scarlett J. The generalized lasso with nonlinear observations and generative priors 2020. Preprint 2006.12415

  40. März M, Boyer C, Kahn J, Weiss P. Sampling rates for \(\ell ^1\)-synthesis 2020. Preprint 2004.07175

  41. Mendelson S. Learning without concentration. J. ACM 62(3): 21 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Mendelson, S.: Upper bounds on product and multiplier empirical processes. Stoch. Proc. Appl. 126(12), 3652–3680 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Mendelson, S., Pajor, A., Tomczak-Jaegermann, N.: Reconstruction and subgaussian operators in asymptotic geometric analysis. Geom. Funct. Anal. 17(4), 1248–1282 (2007)

    MathSciNet  MATH  Google Scholar 

  44. Moshtaghpour, A., Jacques, L., Cambareri, V., Degraux, K., De Vleeschouwer, C.: Consistent basis pursuit for signal and matrix estimates in quantized compressed sensing. IEEE Signal Process. Lett. 23(1), 25–29 (2016)

    Google Scholar 

  45. Oymak S. Recht B. Near-optimal bounds for binary embeddings of arbitrary sets 2015. Preprint 1512.04433

  46. Oymak, S., Recht, B., Soltanolkotabi, M.: Sharp time-data tradeoffs for linear inverse problems. IEEE Trans. Inf. Theory 64(6), 4129–4158 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Oymak, S., Soltanolkotabi, M.: Fast and reliable parameter estimation from nonlinear observations. SIAM J. Optim. 27(4), 2276–2300 (2017)

    MathSciNet  MATH  Google Scholar 

  48. Plan, Y., Vershynin, R.: One-bit compressed sensing by linear programming. Comm. Pure Appl. Math. 66(8), 1275–1297 (2013)

    MathSciNet  MATH  Google Scholar 

  49. Plan, Y., Vershynin, R.: Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach. IEEE Trans. Inf. Theory 59(1), 482–494 (2013)

    MathSciNet  MATH  Google Scholar 

  50. Plan, Y., Vershynin, R.: Dimension reduction by random hyperplane tessellations. Discrete Comput. Geom. 51(2), 438–461 (2014)

    MathSciNet  MATH  Google Scholar 

  51. Plan, Y., Vershynin, R.: The generalized Lasso with non-linear observations. IEEE Trans. Inf. Theory 62(3), 1528–1537 (2016)

    MathSciNet  MATH  Google Scholar 

  52. Plan, Y., Vershynin, R., Yudovina, E.: High-dimensional estimation with geometric constraints. Inf. Inference 6(1), 1–40 (2016)

    MathSciNet  MATH  Google Scholar 

  53. Richard, E., Obozinski, G.R., Vert, J.P.: Tight convex relaxations for sparse matrix factorization. Advances in Neural Information Processing Systems 27: 3284–3292 (2014)

    Google Scholar 

  54. Rudelson, M., Vershynin, R.: On sparse reconstruction from fourier and gaussian measurements. Comm. Pure Appl. Math. 61(8), 1025–1045 (2008)

    MathSciNet  MATH  Google Scholar 

  55. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60(1–4), 259–268 (1992)

    MathSciNet  MATH  Google Scholar 

  56. Sattar, Y., Oymak, S.: Quickly finding the best linear model in high dimensions via projected gradient descent. IEEE Trans. Signal Process. 68, 818–829 (2020)

    MathSciNet  MATH  Google Scholar 

  57. Stojnic M. Various thresholds for \(\ell _1\)-optimization in compressed sensing 2009. Preprint 0907.3666

  58. Stollenwerk A. One-bit compressed sensing and fast binary embeddings. Phd thesis, available online: https://doi.org/10.18154/RWTH-2020-00296, RWTH Aachen 2019

  59. Talagrand, M.: Upper and Lower Bounds for Stochastic Processes, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 3. Springer Berlin Heidelberg (2014)

    Google Scholar 

  60. Thrampoulidis C, Abbasi E, Hassibi B. LASSO with non-linear measurements is equivalent to one with linear measurements. In: C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama, R. Garnett (eds.) Advances in Neural Information Processing Systems 28, pp. 3402–3410. Curran Associates 2015

  61. Thrampoulidis C, Rawat AS. Lifting high-dimensional non-linear models with Gaussian regressors 2017. Preprint 1712.03638

  62. Thrampoulidis, C., Rawat, A.S.: The generalized Lasso for sub-gaussian measurements with dithered quantization. IEEE Trans. Inf. Theory 66(4), 2487–2500 (2020)

    MathSciNet  MATH  Google Scholar 

  63. Tropp, J.A.: Convex recovery of a structured signal from independent random linear measurements. In: G.E. Pfander (ed.) Sampling Theory, a Renaissance, Applied and Numerical Harmonic Analysis, pp. 76–101. Birkhäuser Cham (2015)

  64. Vershynin R. High-Dimensional Probability: An Introduction with Applications in Data Science, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 47. Cambridge University Press 2018

  65. Xu, C., Jacques, L.: Quantized compressive sensing with RIP matrices: the benefit of dithering. Inf. Inference 9(3), 543–586 (2020)

    MathSciNet  MATH  Google Scholar 

  66. Yang Z, Balasubramanian K, Wang Z, Liu H. Estimating high-dimensional non-Gaussian multiple index models via Stein’s lemma. In: I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (eds.) Advances in Neural Information Processing Systems 30, pp. 6097–6106. Curran Associates 2017

Download references

Acknowledgements

The authors thank Sjoerd Dirksen and Maximilian März for fruitful discussions. Moreover, the authors would like to thank the anonymous referees for their very useful comments and suggestions which have helped to improve the present article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Genzel.

Additional information

Communicated by Thomas Strohmer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

MG acknowledges support by the DFG Priority Programme DFG-SPP 1798 Grant DI 2120/1-1. AS acknowledges support by the Fonds de la Recherche Scientifique – FNRS under Grant n\(^\circ \) T.0136.20 (Learn2Sense)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genzel, M., Stollenwerk, A. A Unified Approach to Uniform Signal Recovery From Nonlinear Observations. Found Comput Math 23, 899–972 (2023). https://doi.org/10.1007/s10208-022-09562-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-022-09562-y

Keywords

Mathematics Subject Classification

Navigation