Skip to main content
Log in

Modern Techniques to Minimize Catalyst Deactivation Due to Coke Deposition in Catalytic Upgrading of Heavy Oil In Situ Processes

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

One of the promising technologies to concurrently recover and upgrade heavy oil is the novel Toe-to-Heel Air Injection (THAI) combined with CAtalytic upgrading PRocess In situ (CAPRI) process. With the add-on CAPRI, the produce oil is partially upgraded to medium or even light oil with American Petroleum Institute (API) gravity increase in range of 3°–7°, viscosity reduction 70–90% and 70–85% recovery of original oil in place. But the catalyst suffers severe deactivation due to active sites coverage and pore blockage caused by coke and heavy metal depositions. This review explores methods of extending catalyst longevity in in situ catalytic upgrading of heavy oil during THAI process to bridge the gap that has been left void for a long period of time, and to serve as a guide for the low-cost catalyst design in order to improve process economics. To direct future research, several approaches such as the use of a structured guard bed, nano-sized catalyst, engineered catalyst support and pore sizes, graded catalyst bed, hydrogen addition, hydrogen-donor solvents, and steam environments have been identified and explored to suppress coke formation during catalytic upgrading of heavy oil. In addition to considerations for catalyst design for in situ upgrading applications, the study also discusses the operation conditions and upgrading environment that minimize coke formation and optimize catalyst longevity in the THAI–CAPRI process and similar processes such as steam assisted gravity drainage (SAGD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Arora V., Hodge T., and Lidderdale, T., Oil-Consumption-Weighted GDP: Description, Calculation, and Comparison, 2016, pp. 1–15. (Accessed 1 May 2021). https://www.eia.gov/workingpapers/pdf/OilC_GDP_MAY16_Final.pdf

  2. Bello, S.S., Wang, C., Zhang, M., Gao, H., Han, Z., Shi, L., Su, F., and Xu, G., Energy Fuels, 2021, vol. 35, pp. 10998–11016. https://doi.org/10.1021/acs.energyfuels.1c01015

    Article  CAS  Google Scholar 

  3. Li, Y., Wang, Z., Hu, Z., Xu, B., Li, Y., Pu, W., and Zhao, J., Petroleum, 2021, vol. 7, no. 2, pp. 117–122. https://doi.org/10.1016/j.petlm.2020.09.004

    Article  CAS  Google Scholar 

  4. Hart, A., J. Petrol. Explor. Prod. Technol., 2014, vol. 4, no. 4, pp. 427–437. https://doi.org/10.1007/s13202-013-0096-4

    Article  CAS  Google Scholar 

  5. Hart, A., Greaves, M., and Wood, J., Chem. Eng. J., 2015, vol. 282, pp. 213–223. https://doi.org/10.1016/j.cej.2015.01.101

    Article  CAS  Google Scholar 

  6. Hart, A., Shah, A., Leeke, G., Greaves, M., and Wood, J., Ind. Eng. Chem. Res., 2013, vol. 52, no. 44, pp. 15394–15406. https://doi.org/10.1021/ie400661x

    Article  CAS  Google Scholar 

  7. Shah, A., Fishwick, R.P., Leeke, G.A., Wood, J., Rigby, S.P., and Greaves, M., J. Can. Petrol. Technol., 2011, vol. 50, nos. 11–12, pp. 33–47. https://doi.org/10.2118/136870-PA

    Article  CAS  Google Scholar 

  8. Greaves, M., Dong, L.L., and Rigby, S.P., Energy Fuels, 2012, vol. 26, no. 3, pp. 1656–1669. https://doi.org/10.1021/ef201925c

    Article  CAS  Google Scholar 

  9. Greaves, M., Dong, L.L., and Rigby, S.P., SPE Reserv. Eval. Eng., 2012, vol. 15, no. 01, pp. 72–85. https://doi.org/10.2118/143035-PA

    Article  CAS  Google Scholar 

  10. Xia, T.X., Greaves, M., Werfilli, W.S., and Rathbone, R.R., Int. Thermal Operations and Heavy Oil Symp. and Int. Horizontal Well Technology Conf., Calgary, Alberta, Canada, November 4–7, 2002.

  11. Leyva, C., Rana, S.M., Trejo, F., and Ancheyta, J., Catal. Today, 2009, vol. 141, nos. 1–2, pp. 168–175. https://doi.org/10.1016/j.cattod.2008.03.030

    Article  CAS  Google Scholar 

  12. Meng, X., Xu, C., and Gao, J., Fuel, 2007, vol. 86, nos. 13–14, pp. 1720–1726. https://doi.org/10.1016/j.fuel.2006.12.023

    Article  CAS  Google Scholar 

  13. Hart, A., Catal. Lett., 2021, vol. 151, pp. 1788–1795. https://doi.org/10.1007/s10562-020-03444-0

    Article  CAS  Google Scholar 

  14. Bartholomew, H.C., Appl. Catal. A: Gen., 2001, vol. 212, nos. 1–2, pp. 17–60. https://doi.org/10.1016/S0926-860X(00)00843-7

    Article  CAS  Google Scholar 

  15. Moulijn, J.A., van Diepen, A.E., and Kapteijn, F., Appl. Catal. A: Gen., 2001, vol. 212, nos. 1–2, pp. 3–16. https://doi.org/10.1016/S0926-860X(00)00842-5

    Article  CAS  Google Scholar 

  16. Forzatti, P. and Lietti, L., Catal. Today, 1999, vol. 52, nos. 2–3, pp. 165–181. https://doi.org/10.1016/S0920-5861(99)00074-7

    Article  CAS  Google Scholar 

  17. Mann, R., Catal. Today, 1997, vol. 37, no. 3, pp. 331–349. https://doi.org/10.1016/S0920-5861(97)00023-0

    Article  CAS  Google Scholar 

  18. Sie, S.T., Appl. Catal. A: Gen., 2001, vol. 212, nos. 1–2, pp. 129–151. https://doi.org/10.1016/S0926-860X(00)00851-6

    Article  CAS  Google Scholar 

  19. Dunleavy, J.K., Platinum Metals Rev., 2005, vol. 49, no. 3, pp. 156–156. https://doi.org/10.1595/147106705X57764

    Article  Google Scholar 

  20. Absi-Halabi, M., Stanislaus, A., and Trimm, D.L., Appl. Catal., 1991, vol. 72, pp. 193–215. https://doi.org/10.1016/0166-9834(91)85053-X

    Article  CAS  Google Scholar 

  21. Greaves, M., Saghr, A.M., Xia, T.X., Turta, A.T., and Ayasse, C., J. Can. Pet. Technol., 2001, vol. 40, no. 3, pp. 38–47. https://doi.org/10.2118/01-03-03

    Article  Google Scholar 

  22. Greaves, M., SIOR 200312th Eur. Symp. on Improved Oil Recovery, Kazan, Russia, September 8–10, 2003. https://doi.org/10.3997/2214-4609-pdb.7.B011

  23. Greaves, M. and Turta, A., US Patent 5 626 191, May 6, 1997.

  24. Greaves, M. and Xia, T.X., Am. Chem. Soc. Div. Fuel Chem., 2004, vol. 49, no. 1, pp. 69–72.

    CAS  Google Scholar 

  25. Xia, T.X. and Greaves, M., Petroleum Society’s Canadian Int. Petroleum Conf., Calgary, Alberta, Canada, June 12–14, 2001.

  26. Greaves, M. and Rigby, S.P., In situ catalytic upgrading of heavy crude and bitumen: Optimisation of novel CAPRI reactor, 2008. (accessed April 26, 2011). http://www.environmentalresearch.info/search/searchDetail.aspx?ID=406701

  27. Greaves, M., Xia, T., Turta, A., and Ayasse, C., SPE/DOE Improved Oil Recovery Symp., 2000. https://doi.org/10.2523/59334-ms

  28. Wei, W., Wang, J., Afshordi, S., and Gates, I.D., J. Pet. Sci. Eng., 2020, vol. 186, p. 106704. https://doi.org/10.1016/j.petrol.2019.106704

    Article  CAS  Google Scholar 

  29. Perkins, G., Proc. IMechE Part A: J. Power and Energy, 2018, vol. 232, no. 1, pp. 56–73. https://doi.org/10.1177/0957650917721595

    Article  CAS  Google Scholar 

  30. Weissman, G.J., Fuel Process. Technol., 1997, vol. 50, pp. 199–213. https://doi.org/10.1016/S0378-3820(96)01067-3

    Article  CAS  Google Scholar 

  31. Hajdo, L.E., Hallam, R.J., and Vorndran, L.D.L., SPE California Regional Meeting, Bakersfield California, March 27–29, 1985.

  32. Kapadia, P.R., Kallos, M.S., and Gates, I.D., Can. J. Chem. Eng., 2013, vol. 91, pp. 889–901. https://doi.org/10.1002/cjce.21732

    Article  CAS  Google Scholar 

  33. Liu, Y., Gao, L., Wen, L., Zong, B., Recent Patents on Chemical Engineering, 2009, vol. 2, pp. 22–36. https://doi.org/10.2174/1874478810902010022

    Article  CAS  Google Scholar 

  34. Leyva, C., Rana, S.M., Trejo, F., and Ancheyta, A., Ind. Eng. Chem. Res., 2007, vol. 46, no. 23, pp. 7448–7466. https://doi.org/10.1021/ie070128q

    Article  CAS  Google Scholar 

  35. Hart, A., Adam, M., Robinson, J.P., Rigby, S.P., and Wood, J., Catalysts, 2020, vol. 10, no. 4, p. 393. https://doi.org/10.3390/catal10040393

    Article  CAS  Google Scholar 

  36. Gray, R.M., Zhao, Y., and McKnight, C.M., Fuel, 2000, vol. 79, nos. 3–4, pp. 285–294. https://doi.org/10.1016/S0016-2361(99)00162-3

    Article  CAS  Google Scholar 

  37. Speight, J.G., Korean J. Chem. Eng., 1998, vol. 5, no. 1, pp. 1–8. https://doi.org/10.1007/BF02705298

    Article  Google Scholar 

  38. Hart, A., Wood, J., and Greaves, M., J. Pet. Sci. Eng., 2017, vol. 156, pp. 958–965. https://doi.org/10.1016/j.petrol.2017.06.067

    Article  CAS  Google Scholar 

  39. Hart, A., Wood, J., and Greaves, M., J. Anal. Appl. Pyrol., 2017, vol. 128, pp. 18–26. https://doi.org/10.1016/j.jaap.2017.11.004

    Article  CAS  Google Scholar 

  40. Banerjee, D.K., Laidler, K.J., Nandi, B.N., and Patmore, D.J., Fuel, 1986, vol. 65, pp. 480–484. https://doi.org/10.1016/0016-2361(86)90036-0

    Article  CAS  Google Scholar 

  41. Ancheyta, J., Betancourt, G., Centeno, G., Marroquin, G., Alonso, F., and Garciafigueroa, E., Energy Fuels, 2002, vol. 16, no. 6, pp. 1438–1443. https://doi.org/10.1021/ef020045g

    Article  CAS  Google Scholar 

  42. Zhou, X., Chen, T., Yang, B., Jiang, X., Zhang, H., and Wang, L., Energy Fuels, 2011, vol. 25, no. 6, pp. 2427–2437. https://doi.org/10.1021/ef200316r

    Article  CAS  Google Scholar 

  43. Seki, H. and Yoshimoto, M., Fuel Process. Technol., 2001, vol. 69, no. 3, pp. 229–238. https://doi.org/10.1016/S0378-3820(00)00143-0

    Article  CAS  Google Scholar 

  44. Kallinikos, L.E., Bellos, G.D., and Papayannakos, N.G., Fuel, 2008, vol. 87, no. 12, pp. 2444–2449. https://doi.org/10.1016/j.fuel.2008.03.007

    Article  CAS  Google Scholar 

  45. Argyle, D.M. and Bartholomew, H.C., Catalysts, 2015, vol. 5, no. 1, pp. 145–269. https://doi.org/10.3390/catal5010145

    Article  CAS  Google Scholar 

  46. Chang, J.H. and Crynes, B.L., AIChE J., 1986, vol. 32, no. 2, pp. 224–232. https://doi.org/10.1002/aic.690320208

    Article  CAS  Google Scholar 

  47. Chang, H.J., Seapan, M., and Crynes, B.L., Chemical Reaction Engineering, Boston, ch. 26, pp. 309–320. https://doi.org/10.1021/bk-1982-0196.ch026;

  48. Norton, MacroTrap guard bed, Norton Chemical Process Product Corporation, 1998. (accessed April 19, 2011). https://www.norpro.saint-gobain.com/products/bed-topping-media/macrotrap-guard-bed-media

  49. Wood, J. and Gladden, L.F., Appl. Catal. A: Gen., 2003, vol. 249, no. 2, pp.241–253. https://doi.org/10.1016/S0926-860X(03)00200-X

    Article  CAS  Google Scholar 

  50. Hart, A. and Wood, J., Energies, 2018, vol. 11, no. 3, p. 636. https://doi.org/10.3390/en11030636

    Article  CAS  Google Scholar 

  51. Sekhar, M.V.C., Stud. Surf. Sci. Catal., 1988, vol. 38, pp. 383–392. https://doi.org/10.1016/S0167-2991(09)60671-6

    Article  Google Scholar 

  52. Adam, M., Anbari, H., Hart, A., Wood, J., Robinson, J.P., and Rigby, S.P., Chem. Eng. J., 2021, vol. 413, p. 127420. https://doi.org/10.1016/j.cej.2020.127420

    Article  CAS  Google Scholar 

  53. Hart, A., Leeke, G., Greaves, M., and Wood, J., Fuel, 2014, vol. 119, pp.226–235. https://doi.org/10.1016/j.fuel.2013.11.048

    Article  CAS  Google Scholar 

  54. Hart, A., Leeke, G., Greaves, M., and Wood, J., Energy Fuels, 2014, vol. 28, no. 3, pp. 1811–1819. https://doi.org/10.1021/ef402300k

    Article  CAS  Google Scholar 

  55. Sebastián, D., Bordejé, E., Calvillo, L., Lazaro, M.J., and Moliner, R., Int. J. Hydrogen Energy, 2008, vol. 33, no. 4, pp. 1329–1334. https://doi.org/10.1016/j.ijhydene.2007.12.037

    Article  CAS  Google Scholar 

  56. Hart, A., Lewis, C., White, T., Greaves, M., and Wood, J., Fuel Process. Technol., 2015, vol. 138, pp.724–733. https://doi.org/10.1016/j.fuproc.2015.07.016

    Article  CAS  Google Scholar 

  57. Alkhaldi, S. and Husein, M.M., Energy Fuels, 2014, vol. 28, no. 1, pp. 643–649. https://doi.org/10.1021/ef401751s

    Article  CAS  Google Scholar 

  58. Galarraga, E.C. and Pereira-Almao, P., Energy Fuels, 2010, vol. 24, no. 4, pp. 2383–2389. https://doi.org/10.1021/ef9013407

    Article  CAS  Google Scholar 

  59. Hashemi, R., Nassar, N.N., and Pereira-Almao, P., Energy Fuels, 2014, vol. 28, no. 2, pp. 1338–1350. https://doi.org/10.1021/ef401716h

    Article  CAS  Google Scholar 

  60. Angeles, M.J., Leyva, C., Ancheyta, J., and Ramirez, S.A., Catal. Today, 2013, vols. 220–222, pp. 274–294. https://doi.org/10.1016/j.cattod.2013.08.016

    Article  CAS  Google Scholar 

  61. Galarraga, E.C., Scott, C., Loria, H., and Pereira-Almao, P., Ind. Eng. Chem. Res., 2012, vol. 51, no. 1, pp. 140–146. https://doi.org/10.1021/ie201202b

    Article  CAS  Google Scholar 

  62. Khadzhiev, S.N., Kadiev, Kh.M., Zekel’, L.A., and Kadieva, M.Kh., Pet. Chem., 2018, vol. 58, no. 7, pp. 535–541. https://doi.org/10.1134/S0965544118070046

  63. Al-Marshed, A., Hart, A., Leeke, G., Greaves, M., and Wood, J., Energy Fuels, 2015, vol. 29, no. 10, pp. 6306–6316. https://doi.org/10.1021/acs.energyfuels.5b01451

    Article  CAS  Google Scholar 

  64. Al-Marshed, A., Hart, A., Leeke, G., Greaves, M., and Wood, J., Ind. Eng. Chem. Res., 2015, vol. 54, no. 43, pp. 10645–10655. https://doi.org/10.1021/acs.iecr.5b02953

  65. Timoshkina, V.V., Zurnina, A.A., Solmanov, S.P., Maximov, M.N., and Pimerzin, A.A., Pet. Chem., 2019, vol. 59, no. 12, pp. 1269–1277 https://doi.org/10.1134/S0965544119120120

  66. Sviridenko, N.N., Vosmerikov, A.V., Agliullin, M.R., and Kutepov, B.I., Pet. Chem., 2020, vol. 60, no. 3, pp. 384–391. https://doi.org/10.1134/S0965544120030214

  67. Marafi, M., Stanislaus, A., and Furimsky, E., in Handbook of Spent Hydroprocessing Catalysts, 2010, ch. 6, pp. 121–190. https://doi.org/10.1016/b978-0-444-53556-6.00006-9

  68. Zhang, Y., Yao, M., Sun, G., Gao, S., and Xu, G., Ind. Eng. Chem. Res., 2014, vol. 53, no. 15, pp. 6316–6324. https://doi.org/10.1021/ie4043328

    Article  CAS  Google Scholar 

  69. Marafi, M., Stanislaus, A., and Absi-Halabi, M., Appl. Catal. B: Environ., 1994, vol. 4, no. 1, pp. 19–27. https://doi.org/10.1016/0926-3373(94)00010-7

    Article  CAS  Google Scholar 

  70. Trimm, D.L., Stud. Surf. Sci. Catal., 1989, vol. 53, pp. 41–60. https://doi.org/10.1016/S0167-2991(08)61059-9

    Article  Google Scholar 

  71. Canıaz, O.R., Arca, S., Yasar, M., and Erkey, C., J. Supercrit. Fluids, 2019, vol. 152, p. 104569. https://doi.org/10.1016/j.supflu.2019.104569

    Article  CAS  Google Scholar 

  72. Hosseinpour, M., Fatemi, S., Ahmadi, J.S., Morimoto, M., Akizuki, M., Oshima, Y., and Fumoto, E., Appl. Catal. B: Environ., 2018, vol. 230, pp. 91–101. https://doi.org/10.1016/j.apcatb.2018.02.030

    Article  CAS  Google Scholar 

  73. Hosseinpour, M., Soltani, M., Noofeli, A., and Nathwani, J., Fuel, 2020, vol. 271, p. 117618. https://doi.org/10.1016/j.fuel.2020.117618

    Article  CAS  Google Scholar 

  74. Chen, W.-H. and Chen, C.-Y., Appl. Energy, 2020, vol. 258, p. 114078. https://doi.org/10.1016/j.apenergy.2019.114078

    Article  CAS  Google Scholar 

  75. Suwaid, M.A., Varfolomeev, M.A., Al-muntaser, A.A., Yuan, C., Starshinova, V.L., Zinnatullin, A., Vagizov, F.G., Rakhmatullin, I.Z., Emelianov, D.A., and Chemodanov, A.E., Fuel, 2020, vol. 281, p. 118753. https://doi.org/10.1016/j.fuel.2020.118753

    Article  CAS  Google Scholar 

  76. AL-Rubaye, A.H., Suwaid, M.A., Al-Muntaser, A.A., Varfolomeev, M.A., Rakhmatullin, I.Z., Hakimi, M.H., and Saeed, S.A., J. Petrol. Explor. Prod. Technol., 2021. https://doi.org/10.1007/s13202-021-01311-1

  77. Guerra, P., Zaker, A., Duan, P., Maag, A.R., Tompsett, G.A., Brown, A.B., Schmidt-Rohr, K., and Timko, M.T., Appl. Catal. A: Gen., 2020, vol. 590, p. 117330. https://doi.org/10.1016/j.apcata.2019.117330

    Article  CAS  Google Scholar 

  78. Liu, D., Tang, J., Zheng, R., and Song, Q., Fuel, 2020, vol. 264, p. 116904. https://doi.org/10.1016/j.fuel.2019.116904

    Article  CAS  Google Scholar 

  79. Belgrave, J.D.M., Moore, R.G., and Ursenbach, M.G., J. Can. Pet. Technol., 1997, vol. 36, no. 04, pp. 38–44. https://doi.org/10.2118/97-04-03

    Article  CAS  Google Scholar 

  80. Mironenko, O.O., Sosnin, A.G., Eletskii, M.P., Gulyaeva, K.Yu., Bulavchenko, A.O., Stonkus, A.O., Rodina, O.V., and Yakovlev, A.V., Pet. Chem., 2017, vol. 57, no. 7, pp. 618–629. https://doi.org/10.1134/S0965544117070088

  81. Vakhin, A.V., Aliev, F.A., Mukhamatdinov, I.I., Sitnov, S.A., Kudryashov, S.I., Afanasiev, I.S., Petrashov, O.V., and Nurgaliev, D.K., Catalysts, 2021, vol. 11, no. 2, p. 189. https://doi.org/10.3390/catal11020189

    Article  CAS  Google Scholar 

  82. Yermakov, V., Henderson, J., and Fattouh, B., Russia’s Heavy Fuel Oil Exports: Challenges and Changing Rules Abroad and at Home, The Oxford Inst. for Energy Studies, 2019. https://doi.org/10.26889/9781784671358

Download references

Funding

The author acknowledges financially supported from the Petroleum Technology Development Fund (PTDF) of Nigeria (Award no. PTDF/E/OSS/PHD/HA/405/11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abarasi Hart.

Ethics declarations

The author declares no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hart, A. Modern Techniques to Minimize Catalyst Deactivation Due to Coke Deposition in Catalytic Upgrading of Heavy Oil In Situ Processes. Pet. Chem. 62, 714–731 (2022). https://doi.org/10.1134/S0965544122020189

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544122020189

Keywords:

Navigation