Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The metabolic basis of epilepsy

Subjects

Abstract

The brain is a highly energy-demanding organ and requires bioenergetic adaptability to balance normal activity with pathophysiological fuelling of spontaneous recurrent seizures, the hallmark feature of the epilepsies. Recurrent or prolonged seizures have long been known to permanently alter neuronal circuitry and to cause excitotoxic injury and aberrant inflammation. Furthermore, pathological changes in bioenergetics and metabolism are considered downstream consequences of epileptic seizures that begin at the synaptic level. However, as we highlight in this Review, evidence is also emerging that primary derangements in cellular or mitochondrial metabolism can result in seizure genesis and lead to spontaneous recurrent seizures. Basic and translational research indicates that the relationships between brain metabolism and epileptic seizures are complex and bidirectional, producing a vicious cycle that compounds the deleterious consequences of seizures. Metabolism-based treatments such as the high-fat, antiseizure ketogenic diet have become mainstream, and metabolic substrates and enzymes have become attractive molecular targets for seizure prevention and recovery. Moreover, given that metabolism is crucial for epigenetic as well as inflammatory changes, the idea that epileptogenesis can be both negatively and positively influenced by metabolic changes is rapidly gaining ground. Here, we review evidence that supports both pathophysiological and therapeutic roles for brain metabolism in epilepsy.

Key points

  • Epileptic seizures induce widespread derangements in cellular and mitochondrial metabolism, as well as cerebral flood flow.

  • Primary defects in genes that encode mitochondrial proteins and/or metabolic substrates and enzymes can increase neuronal and glial network excitability.

  • Brain metabolic homeostasis and function can be viewed as an interplay among the cerebral circulation, glia and neurons, also known as the neurovascular unit.

  • Epilepsy can be viewed as a metabolic disease, and primordial mechanisms evoked by compounds such as adenosine could be highly relevant to seizures and epileptogenesis.

  • Metabolism-based treatments such as the high-fat ketogenic diet and its variants can help to restore metabolic homeostasis and enable seizure control.

  • As dietary therapies can often control seizures in individuals with medically intractable epilepsy, experimental therapeutics based on metabolic targets should be explored.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The astrocyte–neuron lactate shuttle.
Fig. 2: Epilepsy treatment targets in the pyramid of life.
Fig. 3: Adenosine metabolism and epileptogenesis.
Fig. 4: Principal mechanisms involved in the pathogenesis of metabolic epilepsies.
Fig. 5: Metabolic substrates and enzymes that regulate synaptic neurotransmission and neuronal excitability.
Fig. 6: Biochemical pathways and mitochondria.
Fig. 7: Mechanisms underlying the neuroprotective effects of ketogenic and related diets.

Similar content being viewed by others

References

  1. Devinsky, O. et al. Epilepsy. Nat. Rev. Dis. Prim. 4, 18024 (2018).

    Article  PubMed  Google Scholar 

  2. Hall, C. N., Klein-Flugge, M. C., Howarth, C. & Attwell, D. Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing. J. Neurosci. 32, 8940–8951 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rangaraju, V., Calloway, N. & Ryan, T. A. Activity-driven local ATP synthesis is required for synaptic function. Cell 156, 825–835 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Otahal, J., Folbergrova, J., Kovacs, R., Kunz, W. S. & Maggio, N. Epileptic focus and alteration of metabolism. Int. Rev. Neurobiol. 114, 209–243 (2014).

    Article  PubMed  Google Scholar 

  5. Zsurka, G. & Kunz, W. S. Mitochondrial dysfunction and seizures: the neuronal energy crisis. Lancet Neurol. 14, 956–966 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Vezzani, A., French, J., Bartfai, T. & Baram, T. Z. The role of inflammation in epilepsy. Nat. Rev. Neurol. 7, 31–40 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Vezzani, A., Pascente, R. & Ravizza, T. Biomarkers of epileptogenesis: the focus on glia and cognitive dysfunctions. Neurochem. Res. 42, 2089–2098 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Eyo, U. B., Murugan, M. & Wu, L. J. Microglia-neuron communication in epilepsy. Glia 65, 5–18 (2017).

    Article  PubMed  Google Scholar 

  9. Lim, A. & Thomas, R. H. The mitochondrial epilepsies. Eur. J. Paediatr. Neurol. 24, 47–52 (2020).

    Article  PubMed  Google Scholar 

  10. Pearson-Smith, J. N. & Patel, M. Metabolic dysfunction and oxidative stress in epilepsy. Int. J. Mol. Sci. 18, 2365 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  11. Conboy, K., Henshall, D. C. & Brennan, G. P. Epigenetic principles underlying epileptogenesis and epilepsy syndromes. Neurobiol. Dis. 148, 105179 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Pan, J. W. et al. Neurometabolism in human epilepsy. Epilepsia 49(Suppl. 3), 31–41 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Singh, S. et al. Reviving mitochondrial bioenergetics: a relevant approach in epilepsy. Mitochondrion 58, 213–226 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Rogawski, M. A., Loscher, W. & Rho, J. M. Mechanisms of action of antiseizure drugs and the ketogenic diet. Cold Spring Harb. Perspect. Med. 6, a022780 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Chen, Z., Brodie, M. J., Liew, D. & Kwan, P. Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: a 30-year longitudinal cohort study. JAMA Neurol. 75, 279–286 (2018).

    Article  PubMed  Google Scholar 

  16. Rho, J. M. & White, H. S. Brief history of anti-seizure drug development. Epilepsia Open 3, 114–119 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lynch, B. A. et al. The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc. Natl Acad. Sci. USA 101, 9861–9866 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bialer, M. et al. Progress report on new antiepileptic drugs: a summary of the Fifteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XV). II. Drugs in more advanced clinical development. Epilepsia 61, 2365–2385 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Freeman, J., Veggiotti, P., Lanzi, G., Tagliabue, A. & Perucca, E. The ketogenic diet: from molecular mechanisms to clinical effects. Epilepsy Res. 68, 145–180 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Neal, E. G. et al. The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol. 7, 500–506 (2008).

    Article  PubMed  Google Scholar 

  21. Neal, E. G. et al. A randomized trial of classical and medium-chain triglyceride ketogenic diets in the treatment of childhood epilepsy. Epilepsia 50, 1109–1117 (2009).

    Article  PubMed  Google Scholar 

  22. Huttenlocher, P. R. Ketonemia and seizures: metabolic and anticonvulsant effects of two ketogenic diets in childhood epilepsy. Pediatr. Res. 10, 536–540 (1976).

    Article  CAS  PubMed  Google Scholar 

  23. Kossoff, E. et al. A modified Atkins diet is effective for the treatment of intractable pediatric epilepsy. Epilepsia 47, 421–424 (2006).

    Article  PubMed  Google Scholar 

  24. Muzykewicz, D. A. et al. Efficacy, safety, and tolerability of the low glycemic index treatment in pediatric epilepsy. Epilepsia 50, 1118–1126 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Martin-McGill, K. J., Bresnahan, R., Levy, R. G. & Cooper, P. N. Ketogenic diets for drug-resistant epilepsy. Cochrane Database Syst. Rev. 6, CD001903 (2020).

    PubMed  Google Scholar 

  26. Gano, L. B., Patel, M. & Rho, J. M. Ketogenic diets, mitochondria, and neurological diseases. J. Lipid Res. 55, 2211–2228 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sokoloff, L. et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the concscious and anesthetized albino rat. J. Neurochem. 28, 897–916 (1977).

    Article  CAS  PubMed  Google Scholar 

  28. Belanger, M., Allaman, I. & Magistretti, P. J. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 14, 724–738 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Engl, E. & Attwell, D. Non-signalling energy use in the brain. J. Physiol. 593, 3417–3429 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Profaci, C. P., Munji, R. N., Pulido, R. S. & Daneman, R. The blood-brain barrier in health and disease: important unanswered questions. J. Exp. Med. 217, e20190062 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Loscher, W. & Friedman, A. Structural, molecular, and functional alterations of the blood–brain barrier during epileptogenesis and epilepsy: a cause, consequence, or both? Int. J. Mol. Sci. 21, 591 (2020).

    Article  PubMed Central  CAS  Google Scholar 

  32. Dienel, G . A. & Carlson, G. M. Major advances in brain glycogen research: understanding of the roles of glycogen have evolved from emergency fuel reserve to dynamic, regulated participant in diverse brain functions. Adv. Neurobiol. 23, 1–16 (2019).

    Article  PubMed  Google Scholar 

  33. Dienel, G. A. Fueling and imaging brain activation. ASN Neuro 4, e00093 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Owen, O. E. et al. Brain metabolism during fasting. J. Clin. Invest. 46, 1589–1595 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hasselbalch, S. G. et al. Brain metabolism during short-term starvation in humans. J. Cereb. Blood Flow. Metab. 14, 125–131 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Bordone, M. P. et al. The energetic brain–a review from students to students. J. Neurochem. 151, 139–165 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Boison, D. & Steinhauser, C. Epilepsy and astrocyte energy metabolism. Glia 66, 1235–1243 (2018).

    Article  PubMed  Google Scholar 

  38. Maher, F., Vannucci, S. J. & Simpson, I. A. Glucose transporter proteins in brain. FASEB J. 8, 1003–1011 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Pellerin, L. & Magistretti, P. J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Natl Acad. Sci. USA 91, 10625–10629 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Magistretti, P. J. & Allaman, I. Lactate in the brain: from metabolic end-product to signalling molecule. Nat. Rev. Neurosci. 19, 235–249 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Machler, P. et al. In vivo evidence for a lactate gradient from astrocytes to neurons. Cell Metab. 23, 94–102 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Felmlee, M. A., Jones, R. S., Rodriguez-Cruz, V., Follman, K. E. & Morris, M. E. Monocarboxylate transporters (SLC16): function, regulation, and role in health and disease. Pharmacol. Rev. 72, 466–485 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bak, L. K. et al. Neuronal glucose but not lactate utilization is positively correlated with NMDA-induced neurotransmission and fluctuations in cytosolic Ca2+ levels. J. Neurochem. 109 (Suppl. 1), 87–93 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Diaz-Garcia, C. M. & Yellen, G. Neurons rely on glucose rather than astrocytic lactate during stimulation. J. Neurosci. Res. 97, 883–889 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Lin, A. L., Fox, P. T., Hardies, J., Duong, T. Q. & Gao, J. H. Nonlinear coupling between cerebral blood flow, oxygen consumption, and ATP production in human visual cortex. Proc. Natl Acad. Sci. USA 107, 8446–8451 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tarczyluk, M. A. et al. Functional astrocyte-neuron lactate shuttle in a human stem cell-derived neuronal network. J. Cereb. Blood Flow. Metab. 33, 1386–1393 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Devinsky, O., Vezzani, A., Najjar, S., De Lanerolle, N. C. & Rogawski, M. A. Glia and epilepsy: excitability and inflammation. Trends Neurosci. 36, 174–184 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Robel, S. & Sontheimer, H. Glia as drivers of abnormal neuronal activity. Nat. Neurosci. 19, 28–33 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Verhoog, Q. P., Holtman, L., Aronica, E. & van Vliet, E. A. Astrocytes as guardians of neuronal excitability: mechanisms underlying epileptogenesis. Front. Neurol. 11, 591690 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Huguenard, J. R. & McCormick, D. A. Thalamic synchrony and dynamic regulation of global forebrain oscillations. Trends Neurosci. 30, 350–356 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Lado, F. A. & Moshe, S. L. How do seizures stop? Epilepsia 49, 1651–1664 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yekhlef, L., Breschi, G. L., Lagostena, L., Russo, G. & Taverna, S. Selective activation of parvalbumin- or somatostatin-expressing interneurons triggers epileptic seizurelike activity in mouse medial entorhinal cortex. J. Neurophysiol. 113, 1616–1630 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Toyoda, I., Fujita, S., Thamattoor, A. K. & Buckmaster, P. S. Unit activity of hippocampal interneurons before spontaneous seizures in an animal model of temporal lobe epilepsy. J. Neurosci. 35, 6600–6618 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Righes Marafiga, J., Vendramin Pasquetti, M. & Calcagnotto, M. E. GABAergic interneurons in epilepsy: more than a simple change in inhibition. Epilepsy Behav. 121, 106935 (2020).

    Article  PubMed  Google Scholar 

  55. Dudek, F. E., Yasumura, T. & Rash, J. E. Non-synaptic mechanisms in seizures and epileptogenesis. Cell Biol. Int. 22, 793–805 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Timofeev, I., Bazhenov, M., Seigneur, J. & Sejnowski, T. Neocortical synchronization. Epilepsia 51, 18 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Jefferys, J. G. et al. Mechanisms of physiological and epileptic HFO generation. Prog. Neurobiol. 98, 250–264 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Shivacharan, R. S. et al. Neural recruitment by ephaptic coupling in epilepsy. Epilepsia 62, 1505–1517 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Noebels, J. Pathway-driven discovery of epilepsy genes. Nat. Neurosci. 18, 344–350 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Blumcke, I. et al. Toward a refined genotype-phenotype classification scheme for the international consensus classification of focal cortical dysplasia. Brain Pathol. 31, e12956 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Barkovich, A. J., Dobyns, W. B. & Guerrini, R. Malformations of cortical development and epilepsy. Cold Spring Harb. Perspect. Med. 5, a022392 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Becker, A. J. Review: animal models of acquired epilepsy: insights into mechanisms of human epileptogenesis. Neuropathol. Appl. Neurobiol. 44, 112–129 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Crino, P. B. The mTOR signalling cascade: paving new roads to cure neurological disease. Nat. Rev. Neurol. 12, 379–392 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Pitkanen, A., Lukasiuk, K., Dudek, F. E. & Staley, K. J. Epileptogenesis. Cold Spring Harb. Perspect. Med. 5, a022822 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Olson, C. A. et al. The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell 173, 1728–1741.e13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Loeb, J. A. Identifying targets for preventing epilepsy using systems biology. Neurosci. Lett. 497, 205–212 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kirchner, A., Dachet, F. & Loeb, J. A. Identifying targets for preventing epilepsy using systems biology of the human brain. Neuropharmacology 168, 107757 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. McKee, H. R. & Privitera, M. D. Stress as a seizure precipitant: identification, associated factors, and treatment options. Seizure 44, 21–26 (2017).

    Article  PubMed  Google Scholar 

  69. Walsh, S. et al. A systematic review of the risks factors associated with the onset and natural progression of epilepsy. Neurotoxicology 61, 64–77 (2017).

    Article  PubMed  Google Scholar 

  70. Chen, T., Giri, M., Xia, Z., Subedi, Y. N. & Li, Y. Genetic and epigenetic mechanisms of epilepsy: a review. Neuropsychiatr. Dis. Treat. 13, 1841–1859 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Qaiser, F., Yuen, R. K. C. & Andrade, D. M. Genetics of epileptic networks: from focal to generalized genetic epilepsies. Curr. Neurol. Neurosci. Rep. 20, 46 (2020).

    Article  PubMed  Google Scholar 

  72. Kobow, K. et al. Finding a better drug for epilepsy: antiepileptogenesis targets. Epilepsia 53, 1868–1876 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Engel, J. Jr & Pitkanen, A. Biomarkers for epileptogenesis and its treatment. Neuropharmacology 167, 107735 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Duncan, R. Epilepsy, cerebral blood flow, and cerebral metabolic rate. Cerebrovasc. Brain Metab. Rev. 4, 105–121 (1992).

    CAS  PubMed  Google Scholar 

  75. Sidhu, M. K., Duncan, J. S. & Sander, J. W. Neuroimaging in epilepsy. Curr. Opin. Neurol. 31, 371–378 (2018).

    Article  PubMed  Google Scholar 

  76. Goodman, A. M. & Szaflarski, J. P. Recent advances in neuroimaging of epilepsy. Neurotherapeutics 18, 811–826 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Chugani, H. T. Hypermetabolism on pediatric positron emission tomography scans of brain glucose metabolism: what does it signify? J. Nucl. Med. 62, 1301–1306 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Alkonyi, B., Chugani, H. T. & Juhasz, C. Transient focal cortical increase of interictal glucose metabolism in Sturge-Weber syndrome: implications for epileptogenesis. Epilepsia 52, 1265–1272 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Juhasz, C., Hu, J., Xuan, Y. & Chugani, H. T. Imaging increased glutamate in children with Sturge-Weber syndrome: association with epilepsy severity. Epilepsy Res. 122, 66–72 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nelissen, N. et al. Correlations of interictal FDG-PET metabolism and ictal SPECT perfusion changes in human temporal lobe epilepsy with hippocampal sclerosis. Neuroimage 32, 684–695 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Rakhade, S. N. & Jensen, F. E. Epileptogenesis in the immature brain: emerging mechanisms. Nat. Rev. Neurol. 5, 380–391 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ingvar, M. & Siesjo, B. K. Local blood flow and glucose consumption in the rat brain during sustained bicuculline-induced seizures. Acta Neurol. Scand. 68, 129–144 (1983).

    Article  CAS  PubMed  Google Scholar 

  83. Theodore, W. H. Cerebral blood flow and glucose metabolism in human epilepsy. Adv. Neurol. 79, 873–881 (1999).

    CAS  PubMed  Google Scholar 

  84. Shultz, S. R., O’Brien, T. J., Stefanidou, M. & Kuzniecky, R. I. Neuroimaging the epileptogenic process. Neurotherapeutics 11, 347–357 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  85. During, M. J., Fried, I., Leone, P., Katz, A. & Spencer, D. D. Direct measurement of extracellular lactate in the human hippocampus during spontaneous seizures. J. Neurochem. 62, 2356–2361 (1994).

    Article  CAS  PubMed  Google Scholar 

  86. Boison, D. & Yegutkin, G. G. Adenosine metabolism: emerging concepts for cancer therapy. Cancer Cell 36, 582–596 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dienel, G. A. Brain glucose metabolism: integration of energetics with function. Physiol. Rev. 99, 949–1045 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Sada, N., Lee, S., Katsu, T., Otsuki, T. & Inoue, T. Epilepsy treatment. Targeting LDH enzymes with a stiripentol analog to treat epilepsy. Science 347, 1362–1367 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. McDonald, T. S. & Borges, K. Impaired hippocampal glucose metabolism during and after flurothyl-induced seizures in mice: reduced phosphorylation coincides with reduced activity of pyruvate dehydrogenase. Epilepsia 58, 1172–1180 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Bhandary, S. & Aguan, K. Pyruvate dehydrogenase complex deficiency and its relationship with epilepsy frequency–an overview. Epilepsy Res. 116, 40–52 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. McDonald, T. S., Carrasco-Pozo, C., Hodson, M. P. & Borges, K. Alterations in cytosolic and mitochondrial [U-13C]glucose metabolism in a chronic epilepsy mouse model. eNeuro 4(1), ENEURO.0341-16.2017 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Liang, L. P., Ho, Y. S. & Patel, M. Mitochondrial superoxide production in kainate-induced hippocampal damage. Neuroscience 101, 563–570 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Bainbridge, M. N. et al. Analyses of SLC13A5-epilepsy patients reveal perturbations of TCA cycle. Mol. Genet. Metab. 121, 314–319 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Smeland, O. B., Hadera, M. G., McDonald, T. S., Sonnewald, U. & Borges, K. Brain mitochondrial metabolic dysfunction and glutamate level reduction in the pilocarpine model of temporal lobe epilepsy in mice. J. Cereb. Blood Flow. Metab. 33, 1090–1097 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kunz, W. S., Goussakov, I. V., Beck, H. & Elger, C. E. Altered mitochondrial oxidative phosphorylation in hippocampal slices of kainate-treated rats. Brain Res. 826, 236–242 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Folbergrova, J., Jesina, P., Haugvicova, R., Lisy, V. & Houstek, J. Sustained deficiency of mitochondrial complex I activity during long periods of survival after seizures induced in immature rats by homocysteic acid. Neurochem. Int. 56, 394–403 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Ryan, K., Backos, D. S., Reigan, P. & Patel, M. Post-translational oxidative modification and inactivation of mitochondrial complex I in epileptogenesis. J. Neurosci. 32, 11250–11258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rowley, S. & Patel, M. Mitochondrial involvement and oxidative stress in temporal lobe epilepsy. Free. Radic. Biol. Med. 62, 121–131 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rahman, S. Mitochondrial disease and epilepsy. Dev. Med. Child. Neurol. 54, 397–406 (2012).

    Article  PubMed  Google Scholar 

  100. Williams, S., Hamil, N., Abramov, A. Y., Walker, M. C. & Kovac, S. Status epilepticus results in persistent overproduction of reactive oxygen species, inhibition of which is neuroprotective. Neuroscience 303, 160–165 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Patel, M., Li, Q. Y., Chang, L. Y., Crapo, J. & Liang, L. P. Activation of NADPH oxidase and extracellular superoxide production in seizure-induced hippocampal damage. J. Neurochem. 92, 123–131 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Patel, M. Mitochondrial dysfunction and oxidative stress: cause and consequence of epileptic seizures. Free. Radic. Biol. Med. 37, 1951–1962 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Jarrett, S. G., Liang, L. P., Hellier, J. L., Staley, K. J. & Patel, M. Mitochondrial DNA damage and impaired base excision repair during epileptogenesis. Neurobiol. Dis. 30, 130–138 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Patsoukis, N. et al. Thiol redox state and lipid and protein oxidation in the mouse striatum after pentylenetetrazol-induced epileptic seizure. Epilepsia 46, 1205–1211 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Mueller, S. G., Trabesinger, A. H., Boesiger, P. & Wieser, H. G. Brain glutathione levels in patients with epilepsy measured by in vivo (1)H-MRS. Neurology 57, 1422–1427 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Liang, L. P. & Patel, M. Seizure-induced changes in mitochondrial redox status. Free Radic. Biol. Med. 40, 316–322 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Beltran Gonzalez, A. N., Lopez Pazos, M. I. & Calvo, D. J. Reactive oxygen species in the regulation of the GABA mediated inhibitory neurotransmission. Neuroscience 439, 137–145 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Trevelyan, A. J., Sussillo, D. & Yuste, R. Feedforward inhibition contributes to the control of epileptiform propagation speed. J. Neurosci. 27, 3383–3387 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pallafacchina, G., Zanin, S. & Rizzuto, R. Recent advances in the molecular mechanism of mitochondrial calcium uptake. F1000Res 7, F1000 Faculty Rev-1858 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Giorgi, C. et al. Mitochondrial calcium homeostasis as potential target for mitochondrial medicine. Mitochondrion 12, 77–85 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pathak, T. & Trebak, M. Mitochondrial Ca(2+) signaling. Pharmacol. Ther. 192, 112–123 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Newby, A. C. Adenosine and the concept of ‘retaliatory metabolites’. Trends Biochem. Sci. 9, 42–44 (1984).

    Article  CAS  Google Scholar 

  113. During, M. J. & Spencer, D. D. Adenosine: a potential mediator of seizure arrest and postictal refractoriness. Ann. Neurol. 32, 618–624 (1992).

    Article  CAS  PubMed  Google Scholar 

  114. Dragunow, M., Goddard, G. V. & Laverty, R. Is adenosine an endogenous anticonvulsant? Epilepsia 26, 480–487 (1985).

    Article  CAS  PubMed  Google Scholar 

  115. Boison, D. et al. Neonatal hepatic steatosis by disruption of the adenosine kinase gene. Proc. Natl Acad. Sci. USA 99, 6985–6990 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Williams-Karnesky, R. L. et al. Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis. J. Clin. Invest. 123, 3552–3563 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mohler, H. & Okada, T. Benzodiazepine receptor: demonstration in the central nervous system. Science 198, 849–851 (1977).

    Article  CAS  PubMed  Google Scholar 

  118. Klein, P. et al. Commonalities in epileptogenic processes from different acute brain insults: do they translate? Epilepsia 59, 37–66 (2018).

    Article  CAS  PubMed  Google Scholar 

  119. Fredholm, B. B., Chen, J. F., Cunha, R. A., Svenningsson, P. & Vaugeois, J. M. Adenosine and brain function. Int. Rev. Neurobiol. 63, 191–270 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Fredholm, B. B., Chen, J. F., Masino, S. A. & Vaugeois, J. M. Actions of adenosine at its receptors in the CNS: insights from knockouts and drugs. Annu. Rev. Pharmacol. Toxicol. 45, 385–412 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Fredholm, B. B., Ijzerman, A. P., Jacobson, K. A., Linden, J. & Muller, C. E. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors–an update. Pharmacol. Rev. 63, 1–34 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Boison, D. Adenosine kinase: exploitation for therapeutic gain. Pharmacol. Rev. 65, 906–943 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kluger, G. et al. Pyridoxine-dependent epilepsy: normal outcome in a patient with late diagnosis after prolonged status epilepticus causing cortical blindness. Neuropediatrics 39, 276–279 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Malaspina, P. et al. Succinic semialdehyde dehydrogenase deficiency (SSADHD): pathophysiological complexity and multifactorial trait associations in a rare monogenic disorder of GABA metabolism. Neurochem. Int. 99, 72–84 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tremino, L., Forcada-Nadal, A. & Rubio, V. Insight into vitamin B6-dependent epilepsy due to PLPBP (previously PROSC) missense mutations. Hum. Mutat. 39, 1002–1013 (2018).

    Article  CAS  PubMed  Google Scholar 

  126. Mills, P. B. et al. Epilepsy due to PNPO mutations: genotype, environment and treatment affect presentation and outcome. Brain 137, 1350–1360 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Mills, P. B. et al. Neonatal epileptic encephalopathy caused by mutations in the PNPO gene encoding pyridox(am)ine 5′-phosphate oxidase. Hum. Mol. Genet. 14, 1077–1086 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Pope, S., Artuch, R., Heales, S. & Rahman, S. Cerebral folate deficiency: analytical tests and differential diagnosis. J. Inherit. Metab. Dis. 42, 655–672 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Alonso-Aperte, E., Ubeda, N., Achon, M., Perez-Miguelsanz, J. & Varela-Moreiras, G. Impaired methionine synthesis and hypomethylation in rats exposed to valproate during gestation. Neurology 52, 750–756 (1999).

    Article  CAS  PubMed  Google Scholar 

  130. Applegarth, D. A. & Toone, J. R. Glycine encephalopathy (nonketotic hyperglycinaemia): review and update. J. Inherit. Metab. Dis. 27, 417–422 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Labrie, V. & Roder, J. C. The involvement of the NMDA receptor D-serine/glycine site in the pathophysiology and treatment of schizophrenia. Neurosci. Biobehav. Rev. 34, 351–372 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Bergeron, R., Meyer, T. M., Coyle, J. T. & Greene, R. W. Modulation of N-methyl-D-aspartate receptor function by glycine transport. Proc. Natl Acad. Sci. USA 95, 15730–15734 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gramer, G. et al. Glucose transporter-1 (GLUT1) deficiency syndrome: diagnosis and treatment in late childhood. Neuropediatrics 43, 168–171 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Gloyn, A. L. et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N. Engl. J. Med. 350, 1838–1849 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Shimomura, K. et al. A novel mutation causing DEND syndrome: a treatable channelopathy of pancreas and brain. Neurology 69, 1342–1349 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Olson, T. M. & Terzic, A. Human KATP channelopathies: diseases of metabolic homeostasis. Pflug. Arch. 460, 295–306 (2010).

    Article  CAS  Google Scholar 

  137. Braissant, O., McLin, V. A. & Cudalbu, C. Ammonia toxicity to the brain. J. Inherit. Metab. Dis. 36, 595–612 (2013).

    Article  CAS  PubMed  Google Scholar 

  138. Llansola, M. et al. NMDA receptors in hyperammonemia and hepatic encephalopathy. Metab. Brain Dis. 22, 321–335 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Lax, N. Z., Gorman, G. S. & Turnbull, D. M. Review: central nervous system involvement in mitochondrial disease. Neuropathol. Appl. Neurobiol. 43, 102–118 (2017).

    Article  CAS  PubMed  Google Scholar 

  140. Bindoff, L. A. & Engelsen, B. A. Mitochondrial diseases and epilepsy. Epilepsia 53 (Suppl. 4), 92–97 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Chan, F. et al. The role of astrocytes in seizure generation: insights from a novel in vitro seizure model based on mitochondrial dysfunction. Brain 142, 391–411 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Lax, N. Z. et al. Extensive respiratory chain defects in inhibitory interneurones in patients with mitochondrial disease. Neuropathol. Appl. Neurobiol. 42, 180–193 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Kossoff, E. H. et al. Optimal clinical management of children receiving dietary therapies for epilepsy: updated recommendations of the International Ketogenic Diet Study Group. Epilepsia Open 3, 175–192 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Pfeifer, H. H. & Thiele, E. A. Low-glycemic-index treatment: a liberalized ketogenic diet for treatment of intractable epilepsy. Neurology 65, 1810–1812 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Kim, S. H. et al. The ketogenic diet in children 3 years of age or younger: a 10-year single-center experience. Sci. Rep. 9, 8736 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Lyons, L., Schoeler, N. E., Langan, D. & Cross, J. H. Use of ketogenic diet therapy in infants with epilepsy: a systematic review and meta-analysis. Epilepsia 61, 1261–1281 (2020).

    Article  PubMed  Google Scholar 

  147. Husari, K. S. & Cervenka, M. C. The ketogenic diet all grown up – ketogenic diet therapies for adults. Epilepsy Res. 162, 106319 (2020).

    Article  PubMed  Google Scholar 

  148. Sondhi, V. & Gulati, S. Efficacy of 3 major ketogenic diet therapies in children with drug-resistant epilepsy–reply. JAMA Pediatr. 175, 434–435 (2021).

    Article  PubMed  Google Scholar 

  149. Sourbron, J. et al. Ketogenic diet for the treatment of pediatric epilepsy: review and meta-analysis. Childs Nerv. Syst. 36, 1099–1109 (2020).

    Article  PubMed  Google Scholar 

  150. Boison, D. New insights into the mechanisms of the ketogenic diet. Curr. Opin. Neurol. 30, 187–192 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Poff, A. M., Rho, J. M. & D’Agostino, D. P. Ketone administration for seizure disorders: history and rationale for ketone esters and metabolic alternatives. Front. Neurosci. 13, 1041 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  152. McDonald, T., Puchowicz, M. & Borges, K. Impairments in oxidative glucose metabolism in epilepsy and metabolic treatments thereof. Front. Cell Neurosci. 12, 274 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. DeVivo, D. C., Leckie, M. P., Ferrendelli, J. S. & McDougal, D. B. Jr Chronic ketosis and cerebral metabolism. Ann. Neurol. 3, 331–337 (1978).

    Article  CAS  PubMed  Google Scholar 

  154. Bough, K. J. et al. Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann. Neurol. 60, 223–235 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Kim, D. Y., Vallejo, J. & Rho, J. M. Ketones prevent synaptic dysfunction induced by mitochondrial respiratory complex inhibitors. J. Neurochem. 114, 130–141 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Milder, J. B., Liang, L. P. & Patel, M. Acute oxidative stress and systemic Nrf2 activation by the ketogenic diet. Neurobiol. Dis. 40, 238–244 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Juge, N. et al. Metabolic control of vesicular glutamate transport and release. Neuron 68, 99–112 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kawamura, M. Jr., Ruskin, D. N. & Masino, S. A. Metabolic autocrine regulation of neurons involves cooperation among pannexin hemichannels, adenosine receptors, and KATP channels. J. Neurosci. 30, 3886–3895 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ma, W., Berg, J. & Yellen, G. Ketogenic diet metabolites reduce firing in central neurons by opening K(ATP) channels. J. Neurosci. 27, 3618–3625 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Shao, L. R., Rho, J. M. & Stafstrom, C. E. Glycolytic inhibition: a novel approach toward controlling neuronal excitability and seizures. Epilepsia Open 3, 191–197 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Gimenez-Cassina, A. et al. BAD-dependent regulation of fuel metabolism and K(ATP) channel activity confers resistance to epileptic seizures. Neuron 74, 719–730 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lian, X. Y., Khan, F. A. & Stringer, J. L. Fructose-1,6-bisphosphate has anticonvulsant activity in models of acute seizures in adult rats. J. Neurosci. 27, 12007–12011 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. McDaniel, S. S., Rensing, N. R., Thio, L. L., Yamada, K. A. & Wong, M. The ketogenic diet inhibits the mammalian target of rapamycin (mTOR) pathway. Epilepsia 52, e7–e11 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Warren, E. C. et al. Decanoic acid inhibits mTORC1 activity independent of glucose and insulin signaling. Proc. Natl Acad. Sci. USA 117, 23617–23625 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Shimazu, T. et al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339, 211–214 (2013).

    Article  CAS  PubMed  Google Scholar 

  166. Youm, Y. H. et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat. Med. 21, 263–269 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Koh, M. Y., Lim, K. S., Fong, S. L., Khor, S. B. & Tan, C. T. Impact of COVID-19 on quality of life in people with epilepsy, and a multinational comparison of clinical and psychological impacts. Epilepsy Behav. 117, 107849 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Kobow, K. et al. Deep sequencing reveals increased DNA methylation in chronic rat epilepsy. Acta Neuropathol. 126, 741–756 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Augustin, K. et al. Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. Lancet Neurol. 17, 84–93 (2018).

    Article  CAS  PubMed  Google Scholar 

  170. Elamin, M., Ruskin, D. N., Sacchetti, P. & Masino, S. A. A unifying mechanism of ketogenic diet action: the multiple roles of nicotinamide adenine dinucleotide. Epilepsy Res. 167, 106469 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Garriga-Canut, M. et al. 2-Deoxy-D-glucose reduces epilepsy progression by NRSF-CtBP-dependent metabolic regulation of chromatin structure. Nat. Neurosci. 9, 1382–1387 (2006).

    Article  CAS  PubMed  Google Scholar 

  172. Koenig, J. B. et al. Glycolytic inhibitor 2-deoxyglucose prevents cortical hyperexcitability after traumatic brain injury. JCI Insight 5, e126506 (2019).

    Article  Google Scholar 

  173. Schoeler, N. E. et al. K.Vita: a feasibility study of a blend of medium chain triglycerides to manage drug-resistant epilepsy. Brain Commun. 3, fcab160 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Sandau, U. S. et al. Transient use of a systemic adenosine kinase inhibitor attenuates epilepsy development in mice. Epilepsia 60, 615–625 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Masino, S. A. et al. A ketogenic diet suppresses seizures in mice through adenosine A1 receptors. J. Clin. Invest. 121, 2679–2683 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Lusardi, T. A. et al. Ketogenic diet prevents epileptogenesis and disease progression in adult mice and rats. Neuropharmacology 99, 500–509 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Toti, K. S., Osborne, D., Ciancetta, A., Boison, D. & Jacobson, K. A. South (S)- and North (N)-methanocarba-7-deazaadenosine analogues as inhibitors of human adenosine kinase. J. Med. Chem. 59, 6860–6877 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Schidlitzki, A. et al. Proof-of-concept that network pharmacology is effective to modify development of acquired temporal lobe epilepsy. Neurobiol. Dis. 134, 104664 (2020).

    Article  CAS  PubMed  Google Scholar 

  179. Welzel, L. et al. Network pharmacology for antiepileptogenesis: tolerability and neuroprotective effects of novel multitargeted combination treatments in nonepileptic vs. post-status epilepticus mice. Epilepsy Res. 151, 48–66 (2019).

    Article  CAS  PubMed  Google Scholar 

  180. Matos, M. et al. Deletion of adenosine A2A receptors from astrocytes disrupts glutamate homeostasis leading to psychomotor and cognitive impairment: relevance to schizophrenia. Biol. Psychiatry 78, 763–774 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Matos, M. et al. Adenosine A2A receptors modulate glutamate uptake in cultured astrocytes and gliosomes. Glia 60, 702–716 (2012).

    Article  PubMed  Google Scholar 

  182. Simeone, T. A., Simeone, K. A., Stafstrom, C. E. & Rho, J. M. Do ketone bodies mediate the anti-seizure effects of the ketogenic diet? Neuropharmacology 133, 233–241 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Erecinska, M., Nelson, D., Daikhin, Y. & Yudkoff, M. Regulation of GABA level in rat brain synaptosomes: fluxes through enzymes of the GABA shunt and effects of glutamate, calcium, and ketone bodies. J. Neurochem. 67, 2325–2334 (1996).

    Article  CAS  PubMed  Google Scholar 

  184. Buchhalter, J. R. et al. The relationship between D-beta-hydroxybutyrate blood concentrations and seizure control in children treated with the ketogenic diet for medically intractable epilepsy. Epilepsia Open 2, 317–321 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Won, Y. J., Lu, V. B., Puhl, H. L. III & Ikeda, S. R. β-Hydroxybutyrate modulates N-type calcium channels in rat sympathetic neurons by acting as an agonist for the G-protein-coupled receptor FFA3. J. Neurosci. 33, 19314–19325 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Kim, D. Y. et al. Ketone bodies mediate antiseizure effects through mitochondrial permeability transition. Ann. Neurol. 78, 77–87 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Puchalska, P. & Crawford, P. A. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab. 25, 262–284 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Moller, N. Ketone body, 3-hydroxybutyrate: minor metabolite–major medical manifestations. J. Clin. Endocrinol. Metab. 105, dgaa370 (2020).

    Article  PubMed  Google Scholar 

  189. Elinder, F. & Liin, S. I. Actions and mechanisms of polyunsaturated fatty acids on voltage-gated ion channels. Front. Physiol. 8, 43 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Bordoni, A., Di Nunzio, M., Danesi, F. & Biagi, P. L. Polyunsatured fatty acids: from diet to binding to ppars and other nuclear receptors. Genes Nutr. 1, 95–106 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Simeone, T. A., Matthews, S. A., Samson, K. K. & Simeone, K. A. Regulation of brain PPARgamma2 contributes to ketogenic diet anti-seizure efficacy. Exp. Neurol. 287, 54–64 (2017).

    Article  CAS  PubMed  Google Scholar 

  192. Bromfield, E. et al. A randomized trial of polyunsaturated fatty acids for refractory epilepsy. Epilepsy Behav. 12, 187–190 (2008).

    Article  PubMed  Google Scholar 

  193. Sarmento Vasconcelos, V. et al. Polyunsaturated fatty acid supplementation for drug-resistant epilepsy. Cochrane Database Syst. Rev. 17, CD011014 (2016).

    Google Scholar 

  194. Chang, P. et al. Seizure control by decanoic acid through direct AMPA receptor inhibition. Brain 139, 431–443 (2016).

    Article  PubMed  Google Scholar 

  195. Loscher, W. & Schmidt, D. Epilepsy: perampanel–new promise for refractory epilepsy? Nat. Rev. Neurol. 8, 661–662 (2012).

    Article  PubMed  Google Scholar 

  196. Han, F. Y. et al. Dietary medium chain triglycerides for management of epilepsy: new data from human, dog, and rodent studies. Epilepsia 62, 1790–1806 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Willis, S., Stoll, J., Sweetman, L. & Borges, K. Anticonvulsant effects of a triheptanoin diet in two mouse chronic seizure models. Neurobiol. Dis. 40, 565–572 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Calvert, S., Barwick, K., Par, M., Ni Tan, K. & Borges, K. A pilot study of add-on oral triheptanoin treatment for children with medically refractory epilepsy. Eur. J. Paediatr. Neurol. 22, 1074–1080 (2018).

    Article  PubMed  Google Scholar 

  199. Kumar, M. G. et al. Altered glycolysis and mitochondrial respiration in a zebrafish model of dravet syndrome. eNeuro 3, ENEURO.0008-16.2016 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Ibhazehiebo, K. et al. A novel metabolism-based phenotypic drug discovery platform in zebrafish uncovers HDACs 1 and 3 as a potential combined anti-seizure drug target. Brain 141, 744–761 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Ibhazehiebo, K., Rho, J. M. & Kurrasch, D. M. Metabolism-based drug discovery in zebrafish: an emerging strategy to uncover new anti-seizure therapies. Neuropharmacology 167, 107988 (2020).

    Article  CAS  PubMed  Google Scholar 

  202. Banerji, R. et al. Enhancing glucose metabolism via gluconeogenesis is therapeutic in a zebrafish model of Dravet syndrome. Brain Commun. 3, fcab004 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Koveal, D., Diaz-Garcia, C. M. & Yellen, G. Fluorescent biosensors for neuronal metabolism and the challenges of quantitation. Curr. Opin. Neurobiol. 63, 111–121 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Loscher, W. & Schmidt, D. Modern antiepileptic drug development has failed to deliver: ways out of the current dilemma. Epilepsia 52, 657–678 (2011).

    Article  PubMed  Google Scholar 

  205. Boison, D. The biochemistry and epigenetics of epilepsy: focus on adenosine and glycine. Front. Mol. Neurosci. 9, 26 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

J.M.R. has received funding from the Canadian Institutes of Health Research and the NIH (R21 NS104513), and D.B. has received funding from the NIH (R01NS103740, R01NS065957) and a CURE Epilepsy Catalyst Award. The authors thank R. Tobias for editorial assistance.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Jong M. Rho.

Ethics declarations

Competing interests

J.M.R has been a paid consultant to Aquestive Pharmaceuticals, Danone Nutricia, Mallinckrodt, Eisai Pharma and Zogenix, and has served on the Scientific Advisory Board of The Charlie Foundation for Ketogenic Therapies (Santa Monica, CA, USA). D.B. is a co-founder of PrevEp and J.M.R. is the Chief Medical Officer for Path Therapeutics.

Peer review

Peer review information

Nature Reviews Neurology thanks C. Juhasz and K. Borges for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rho, J.M., Boison, D. The metabolic basis of epilepsy. Nat Rev Neurol 18, 333–347 (2022). https://doi.org/10.1038/s41582-022-00651-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-022-00651-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing